Collins

Edexcel

GCSE

Mathematics

SET B

Author: Keith Gordon

Answers

Key to abbreviations used within the answers

M method mark (e.g. M1 means 1 mark for method)

A accuracy mark (e.g. A1 means 1 mark for accuracy)
B independent marks that do not require method to be shown (e.g. B2 means 2 independent marks) dep dependent on previous mark
ft follow through
oe or equivalent

Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.

All images are © HarperCollinsPublishers and Shutterstock.com

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302221
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data.
A CIP record of this book is available from the British
Library.

Commissioning Editor: Jennifer Hall
Project Leaders and Management: Natasha Paul and Chantal Addy
Author: Keith Gordon
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

	Question	Answer	Mark	Comments
	1	$x+3$	B1	
	2	2 and -3	B1	
	3	$6^{2}+4^{2}$	M1	
		$6^{2}+4^{2}=52, \sqrt{52} \mathrm{~cm}$	A1	
	4	$6 x-12+8=x$	M1	
		$5 x=4$	M1dep	
		$x=0.8$ oe	A1	
	5	Area of any face, i.e. 20×5 or 100 etc.	M1	
		$\begin{aligned} & 2 \times 100+2 \times 50+ \\ & 2 \times 200 \end{aligned}$	M1dep	
		700	A1	
6		$4 x+4-6 x+8$	M1	M1 for 3 terms correct
		$4 x+4-6 x+8$	A1	A1 for 4 terms correct
		$-2 x+12$	A1ft	ft on M1, e.g. $\begin{aligned} & 4 x+1-6 x- \\ & 8=-2 x-7 \\ & \text { is M1, A0, } \\ & \text { A1ft } \end{aligned}$
	7	$2 x+100=180$	M1	
		$360 \div 40$	M1dep	
		9	A1	
	8 (a) (b) (c)	230000	B1	
		5×10^{-4}	B1	
		1.6×10^{8}	B2	$\begin{aligned} & \text { B1 for } 16 \times \\ & 10^{7} \end{aligned}$
		-1.5 and 3	B2	B1 each answer
	(b)	(0.75, - 6.1)	B1	
	10	$x+2=2 x-1$	M1	
		$x=3$	A1	
		$3+2$ or $2 \times 3-1$	M1dep	
		5	A1	
		25	A1	

Question	Answer	Mark	Comments
11	$\begin{aligned} & x^{2}+2 x+1 \text { or } \\ & x^{2}-2 x-3 \end{aligned}$	M1	
	$\begin{aligned} & x^{3}-3 x^{2}+2 x^{2}-6 x+ \\ & x-3 \end{aligned}$	M1dep	
	$x^{3}-x^{2}-5 x-3$	A1	
12	$\pi \times(r)^{2} \times 6 r$	M1	oe
	their $6 \pi r^{3}=48 \pi$	M1dep	
	2	A1	
13	$x \leqslant 6$	B1	
	$x+y \geqslant 7$	B1	
	$y \leqslant x+1$	B1	
14	$27+9 \sqrt{2}-3 \sqrt{8}-\sqrt{16}$	M1	oe
	$27+9 \sqrt{2}-6 \sqrt{2}-4$	A1	
	$23+3 \sqrt{2}$	A1	
15	Vertical scale marked to at least 3.5 Bar between 5-10 to a height of 3 Bar between 10-20 to a height of 3.5 Bar between 20-35 to a height of 2 Bar between 35-45 to a height of 1.5 Bar between 45-50 to a height of 1	B3	B2 Scale marked and any two bars B1 Scale marked and any 1 bar
16 (a) (b) (c)	56°	B1	
	60°	B1	
	$A C B$ stated or shown as 32	B1	
	$C A B$ stated or shown as 90 (may be implied by working)	B1	
	58°	B1	
17	16	B2	B1 for $(\sqrt[3]{64})^{2} \mathrm{oe}$ B1 for $\sqrt[3]{64}=4$
18 (a) (b)	24	B1	
	31 and 17 seen	M1	
	14	A1	
(c)	Valid box plot with Median marked (ft their median) IQR marked (ft their IQR) Minimum value as 5 and maximum as 50	B2	B1 any 2 components

Question	Answer	Mark	Comments
$19 \text { (a) }$	$\mathbf{a}+\frac{3}{2} \mathbf{b}$	B1	
(b)	$\begin{aligned} & \overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A O}+ \\ & \overrightarrow{O C}=-\mathbf{a}+\frac{1}{2} \mathbf{b} \\ & \text { or }-\frac{3}{2} \mathbf{b}-\mathbf{a}+\overrightarrow{O C} \\ & =-\mathbf{a}+\frac{1}{2} \mathbf{b} \end{aligned}$	M1	
	2b	A1	
20	$x=0.733333 \ldots$ and $10 x=7.33333$	M1	
	$9 x=6.6$ or $\frac{66}{90}$	A1	
	$3 \frac{11}{15}$	A1	
21	$\frac{x^{2}}{2}=9$	M1	
	$x=3 \sqrt{2}$	A1	
	Hypotenuse $=6$	A1	
	$6+2 \times 3 \sqrt{2}$	M1	
	$6+6 \sqrt{2}$	A1	
22	Tree diagram with at least 3 correct probabilities marked or $\mathrm{P}(\mathrm{R}$ and B$)+\mathrm{P}(\mathrm{B}$ and R)	M1	
	All correct probabilities identified as $\frac{7}{10}$, $\frac{3}{10}, \frac{6}{9}$ oe, $\frac{3}{9}$ oe, $\frac{7}{9}$ and $\frac{2}{9}$ or one of $\frac{7}{10} \times \frac{3}{9}$ or $\frac{3}{10} \times \frac{7}{9}$	A1	
	$\frac{7}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{7}{9}$	M1dep	
	$\frac{42}{90}$ or $\frac{7}{15}$	A1	

Question	Answer	Mark	Comments
$\mathbf{2 3}$	$(2 x+3)(2 x-5)$ $(2 x-3)(x+4)$ $2(x+4)$ $(2 x-3)(2 x+3)$	B 3	B2 three factorisations B1 two factorisations
	$\frac{2 x-5}{2}$	B1	
$\mathbf{2 4}$	Gradient $A B=-\frac{1}{2}$	M1	
	Gradient perpendicular $=2$	A1	
	Midpoint $A B=(5,9)$	B1	
	$9=2 \times 5+c$	M1	
	$y=2 x-1$	A1	

Paper 2

Question	Answer	Mark	Comments
1	$(7,6)$	B2	B1 either coordinate
2 (a) (b)	alternate	B1	
	$a+b=180$	B1	
3	Correct translation i.e. $(1,1) \rightarrow(-2,-3)$ etc.	B2	B1 for correct translation of one vector component
4	$6^{2}+11^{2}$	M1	
	$\sqrt{157}$	M1dep	
	12.5...	A1	
5	$\begin{aligned} & 5 \times 145+9 \times 155+ \\ & 12 \times 165+8 \times 175+ \\ & 6 \times 185 \text { or } 6610 \end{aligned}$	M1	
	$6610 \div 40$	M1dep	
	165.25	A1	
6 (a)	Any product including a prime that makes 28	M1	
	$2 \times 2 \times 7$ or $2^{2} \times 7$	A1	
(b)	$2 \times 2 \times 5 \times 7$	M1	
	140	A1	

	Question	Answer	Mark	Comments
7		$4(x+4)=26$	M1	
		$4 x=10$	M1dep	
		2.5	A1	
8		0.85	B1	
		$238 \div 0.85$	M1	
		280	A1	
9		$36 \div 3$ or 12	M1	
		2×12 or 5×12	M1dep	
		24 and 60	A1	
10		$\sqrt{\frac{402}{\pi}}$ or $11.3 \ldots$	M1	
		$11.3 \times \pi+2 \times 11.3$	M1dep	
		[58, 58.2]	A1	
11		Arc from A cutting given line	M1	
		Arc centred on intersection and crossing original arc plus line drawn and angle 60° drawn	A1	
		60° angle bisected	A1	Angle must be between [26, 32]
12 (a)		$4 x^{2}-8 x+3 x-6$	M1	
		$20 x^{2}-25 x-30$	A1	
(b)		$2(x+a)(x+b)$	M1	$a b= \pm 3$
		$2(x+1)(x+3)$	A1	$\begin{aligned} & \text { oe e.g. }(2 x+ \\ & 2)(x+3) \end{aligned}$
	13	Triangle between (3, $9),(4,9)$ and $(4,7)$	B3	B2 two vertices correct B1 rays marked through $(5,8)$
14		30×1.6 or 48	M1	
		$\begin{aligned} & (\text { their } 48-40) \div 40 \\ & (\times 100) \end{aligned}$	M1dep	
		20	A1	

Question	Answer	Mark	Comments
15 (a)	$(x+3)^{2}$	M1	
	$(x+3)^{2}-9$	M1dep	
	$(x+3)^{2}-18$	A1	
(b)	$x+3=\sqrt{18}$	M1	
	$x=-3 \pm \sqrt{18}$	A1	
16	$2(4 x-1)-3(x+1)$	M1	
	$5 x-5=$	A1	
	$\begin{aligned} & (4 x-1)(x+1) \text { or } 4 x^{2} \\ & +4 x-x-1 \end{aligned}$	M1	
	$4 x^{2}-2 x+4$	A1	
17 (a)	$\begin{aligned} & y=k x^{2} \text { and } 20=k \\ & \times 2^{2} \end{aligned}$	M1	
	$k=5$	A1	
	500	A1	
(b)	$5=5 \times x^{2}$	M1	
	± 1	A1	Condone omission of \pm
18	$\begin{aligned} & x(x-6)+2 x+x-4 \\ & +x+30=146 \end{aligned}$	M1	
	$x^{2}-2 x-120=0$	A1	
	$(x-12)(x+10)=0$	A1	
	$x=12$	A1	
	$\frac{8}{146}$ or $\frac{4}{73}$	A1	
19 (a)	$\begin{aligned} & \cos x= \\ & \frac{10^{2}+7^{2}-13^{2}}{2 \times 10 \times 7} \end{aligned}$	M1	
	$-\frac{1}{7}$	A1	
	98.2	A1	
(b)	$\frac{1}{2} \times 7 \times 10 \times \sin$ (their 98.2)	M1	
	34.6...	A1	

Paper 3

Question	Answer	Mark	Comments
$\mathbf{1}$	729	B1	
$\mathbf{2}$	125	B1	
$\mathbf{3}$ (a)	x^{9}	B1	
$\mathbf{(b)}$	x^{10}	B1	
$\mathbf{4}$	$\binom{10}{4}$	B2	B1 for each component
$\mathbf{5}$	$-2,-1,0,1,2,3$	B2	B1 for -3, $-2,-1,0,1, ~$ 2,3 B1 for -2, $-1,0,1,2$, 3,4

Question	Answer	Mark	Comments
6	$1^{2}+2^{2}$	M1	
	$\frac{\sqrt{3}}{2}$	A1	
7		B2	B1 for any enlargement that reduces the size of the shape and keeps the side in relative ratio. B1 for any 3 sides correct.
8	$1.5 \div 2$	M1	
	0.75	A1	
$9 \text { (a) }$ (b)	$\frac{4}{10}$ marked on red and $\frac{6}{10}$ marked on blue	B1	
	$\begin{aligned} & \frac{4}{10} \times \frac{4}{10} \text { or } \\ & \frac{6}{10} \times \frac{6}{10} \end{aligned}$	M1	
	$\begin{aligned} & \frac{4}{10} \times \frac{4}{10}+ \\ & \frac{6}{10} \times \frac{6}{10} \end{aligned}$	M1dep	
	0.52	A1	oe
10	$\begin{aligned} & 3 x+2 y=2 \text { and } \\ & 3 x+12 y=27 \\ & \text { or } 6 x+4 y=4 \text { and } \\ & x+4 y=9 \end{aligned}$	M1	
	$x=-1$	A1	
	$y=2.5$	A1	
11 (a) (b)	$(x+5)(x-5)$	B1	
	$\begin{aligned} & x^{2}+4 x+4 \text { or } \\ & x^{2}+2 x+1 \end{aligned}$	M1	$\begin{aligned} & (x+2+x+1) \\ & (x+2-(x+1)) \end{aligned}$
	$\begin{aligned} & x^{2}+4 x+4- \\ & \left(x^{2}+2 x+1\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { dep } \end{aligned}$	$(2 x+3)(1)$
	Shows subtraction of terms clearly	A1	

	Question	Answer	Mark	Comments
	12 (a)	$12 \times \sin 32=6.359 \ldots$	B1	
(b)		$\pi \times 6.36 \times 12$	M1	
		[236.6, 240]	A1	
	13	0.92	B1	
		$0.92{ }^{n}$ for $n>3$	M1	
		9 years	A1	Accept just over 8 or between 8 and 9
	14	A C B	B2	B1 for 1 correct
	15	$4 x^{4} y^{6}$	B2	B1 for 2 parts correct
	16 (a) (b)	B and D	B1	
		A and D	B1	
	$17 \text { (a) }$ (b)	30 and 38	B2	B1 each
		Works out second difference as 2	M1	
		Subtracts n^{2} from series, i.e. $5,6,7,8$, $9 \ldots$	M1dep	
		Identifies $n+4$ as linear sequence	A1	
		$n^{2}+n+4$	A1	
	18	Shows reflected triangle B at $(7,2)$, $(7,4)$ and $(9,4)$	M1	
		Shows reflected triangle C at $(1,4)$, $(3,4)$ and $(3,2)$	M1dep	
		Rotation, 180°, about $(5,6)$	A2	A1 for 2 parts. Accept reflection in line $y+x=11$ oe
	19	$\frac{x}{\sin 78}=\frac{11}{\sin 65}$	M1	
		$x=\frac{11 \times \sin 78}{\sin 65}$	M1dep	
		[11.87, 11.9]	A1	
	20	$14 \div 8$ or 1.75	M1	
		$540 \times(\text { their } 1.75)^{3}$	M1dep	
		2890	A1	

Question	Answer	Mark	Comments
21	$A C=\sqrt{8^{2}+6^{2}}$ or 10	M1	
	$C X=5$	A1	
	$V X=\sqrt{12^{2}-5^{2}}$ or $\sqrt{119}$ or 10.9...	M1dep	
	$\begin{aligned} & \text { Angle } V C X= \\ & \sin ^{-1}(10.9 \div 12) \end{aligned}$	M1dep	Can use cos or \tan
	[65, 65.4]	A1	
$22 \text { (a) }$ (b) (c)	$b=\sqrt[3]{2 a-3}$	B1	
	-1	B1	
	-1.89	B2	B1 for any further iterations or 1.89...
23 (a)	$x^{2}+y^{2}=16$	B1	
(b)	$\begin{aligned} & \text { Angle }=\tan ^{-1}(2) \text { or } \\ & 63.43 \ldots \end{aligned}$	M1	
	(their $63.43 \div 360$) \times $2 \times \pi \times$ their radius	M1dep	
	[4.36, 4.43]	A1	
24	$\frac{4}{9} x$	M1	
	$\frac{4}{9} x+7$	M1dep	
	$\frac{4}{9} x+7=\frac{x+7}{2}$	M1dep	
	$\frac{1}{18} x=\frac{7}{2}$	M1dep	
	63	A1	T\&I B1 for correct answer
25 (a)	$\frac{x+1}{3}$	B2	B1 for numerator of $3(x+1)$ B1 for $\frac{x-1}{3}$
	$3\left(x^{2}+2\right)-1$	M1	
	$3 x^{2}+5$	A1	
26	$x^{2}+(x+3)^{2}$	M1	
	$x^{2}+x^{2}+6 x+9=x+12$	A1	
	$2 x^{2}+5 x-3=0$	M1	
	$(2 x-1)(x+3)$	A1	
	$\left(\frac{1}{2}, 3 \frac{1}{2}\right)$ and $(-3,0)$	A1	

BLANK PAGE

