Collins

AQA

GCSE

Mathematics

SET B – Foundation Tier

Author: Keith Gordon

Answers

Key to abbreviations used within the answers

M method mark (e.g. M1 means 1 mark for method)

A accuracy mark (e.g. A1 means 1 mark for accuracy)

B independent marks that do not require method to be shown (e.g. B2 means 2 independent marks)

C communication mark

oe or equivalent

ft follow through

dep dependent on previous mark

cao correct answer only

sc special case indep independent

Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.

All images are © HarperCollins*Publishers and* Shutterstock.com

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.

Published by Collins An imprint of HarperCollins*Publishers* 1 London Bridge Street London SE1 9GF © HarperCollins*Publishers* Limited 2018 ISBN 9780008302115

First published 2018

10 9 8 7 6 5 4 3 2 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data.

A CIP record of this book is available from the British Library.

Commissioning Editor: Jennifer Hall Project Leaders and Management: Natasha Paul and Chantal Addy Author: Keith Gordon Cover Design: Paul Oates Inside Concept Design: Ian Wrigley Text Design and Layout: QBS Learning Production: Lyndsey Rogers

1

Paper 1

			Y
Question	Answer	Mark	Comments
1	3500	B1	
2 (a)	7	B1	
2 (b)	7	B1	
3	7 10	B1	
4 (a)	4	B1	
4 (b)	11	B1	
4 (c)	4.25 + 2.75 + 1.5 or 8.5 or 17 × 2	M1	
	34	A1	
4 (d)	38 or 2 seen	M1	
	½ a circle drawn	A1	
5 (a)	985	B1	
5 (b)	167	B1	
5 (c)	138	B1	
5 (d)	32	B1	
6	2 and 5	B2	B1 for either answer and one wrong value e.g. 2 and 7 B1 for both answer and one other value, e.g. 1, 2, 5
7 (a)	07:24	B1	
7 (b)	36 + 1 + 05	M1	
	1 h 41 m	A1	
7 (c)	09 : 16 seen or 16 + 20 36 m	B1 B1	
8	Clear method shown (column, box, Chinese, partition)	M1	
	Correct partial calculation, e.g. 720, 48, 640, 128 or 3 out of 4 correct cells in box or Chinese methods	A1	

Question	Answer	Mark	Comments
9 (a)	4 correct plots	B2	B1 for 3 correct plots or 4 plots with coordinates reversed
9 (b)	Parallelogram	B1	
9 (c)	4 × 6	M1	
	24	A1	
10 (a)	8 <i>a</i>	B1	
10 (b)	6 <i>m</i> or 30 <i>m</i>	M1	
	36 <i>m</i>	A1	
11 (a)	[37, 37.5]	B1	
11 (b)	40 (hectares)	M1	
	40 × 25 000	M1dep	
	£1 000 000	A1	
12	$\frac{4}{7} \times 56 \text{ or } \frac{9}{11}$	M1	
	× 66		
	32 or 54	A1	
	86	A1	
13 (a)	Mark at $\frac{1}{3}$	B1	
13 (b)	3 odd and 3 even numbers	B1	e.g. 2, 3, 5, 6, 7, 8 is B2
	2 multiples of 3	B1	2, 3, 4, 5, 6, 8 is B1 2, 3, 4, 5, 7, 8 is B1 2, 3, 5, 6, 7, 9 is B0
14	ABC or ACB = 80	M1	
	ACD = 100	M1dep	
	40	A1	
15	$360 \div 36 = 10$	M1	
	Angles calculated as 70, 80, 100, 50 and 60	M1dep	
	Angles accurately drawn	A1	
	Sectors labelled	A1	
16	$\pi \times 10^2 \times 8$	M1	
	800π	A1	
17	6x - 12 + 8 = x	M1	
	5x = 4	M1dep	
	x = 0.8 oe	A1	

Question	Answer	Mark	Comments
18	Area any face, i.e. 20×5 or 100 etc.	M1	
	2 × 100 + 2 × 50 + 2 × 200	M1dep	
	700	A1	
19	4x + 4 - 6x + 8	M1	M1 for 3 terms
	4x + 4 - 6x + 8	A1	correct
	−2 <i>x</i> + 12	A1ft	A1 for 4 terms correct ft on M1, e.g. 4x + 1 - 6x - 8 = -2x - 7 is M1, A0, A1ft
20	2x + 100 = 180	M1	
	360 ÷ 40	M1dep	
	9	A1	
21 (a)	-1.5 and 3	B2	B1 each answer
21 (b)	(0.75, -6.1)	B1	
22 (a)	230 000	B1	
22 (b)	5 × 10 ⁻⁴	B1	
22 (c)	1.6 × 10 ⁸	B2	B1 for 16 × 10 ⁷
23	2 <i>n</i> > -11	M2	M1 for $2n > 3$ or $2n > -3$ or $4n > -11$
	<i>n</i> > −5.5	A1ft	ft on M1, e.g. $n > 1.5$
24 (a)	$\sqrt{52}$ cm	B1	
24 (b)	$\frac{3}{4}$	B1	
25	x + 2 = 2x - 1	M1	
	<i>x</i> = 3	A1	
	3 + 2 or 2 × 3 – 1	M1dep	
	5	A1	
	25	A1	

Paper 2

Question	Answer	Mark	Comments
1 (a)	40	B1	
1 (b)	100	B1	
2	x-4	B1	
3	103	B1	
4 (a)	7645	B1	
4 (b)	Any 2 numbers shown, e.g. 4675, 4657 etc.	M1	
	6	A1	

Question	Answer	Mark	Comments
5 (a)	B and F	B1	
5 (b)	4	B1	
5 (c)	2	B1	
5 (d)	Reflex	B1	
6 (a)	7.48 or 748 seen	M1	
	2.52	A1	
6 (b)	£2, 50p, 2p	B2ft	ft least number of coins for their answer for part (a) B1 for any correct combination of coins but not least number
7 (a)	280	B1	
7 (b)	3900	B1	
8 (a)	Add 4 each time	B1	
8 (b)	25	B1ft	ft their rule
8 (c)	34	B1	
8 (d)	5 <i>n</i> – 2	B1	
9	Marks on diagram showing counting of 13 whole squares within or 33 outside shape Explanation that	M1	
	area must be between these limits		
10 (a)	19	B1	
10 (b)	10	B1	
10 (c)	0.55 × 60 oe	M1	
	33	A1	
	Bar drawn to 33	A1	
10 (d)	28 + 19 + 38 + their week 4 or 118	M1	
	240 seen	B1	
	0.5 × 240 or 120	M1	
	Correct conclusion based on their total (No if correct)	A1	

Question	Answer	Mark	Comments
11		B3	B1 for circle
			B1 for rectangle (may be a
	A		different
			orientation)
			B1 for either
			diagonal
			(allow both
			drawn)
12 (a)	26	B1	
12 (b)	32	B1	
13 (a)	3.6	B1	
13 (b)	402.(2)	B1	
13 (c)	Either value	M1	
	rounded to 1 sf e.g. 100 or 20		
	10 + 400 = 410	A1	
14		B2	B1 for 7 seen
	$\frac{7}{20}$		21 101 7 00011
4 >			
15 (a)	4 + 7 × 2.25 + 8	M1	Allow mixed units
	× 0.75 25.75	Λ1	units
4F /L\	25.75 21.25 – 6 × 2.25	A1 M1	Allow mixed
15 (b)	- 4 or 3.75	IVII	units
	Their 3.75 ÷ 0.75	M1dep	dilito
	5	A1	
16 (a)	$x^2 - 2x + 3x - 6$	M1	4 terms, with
(,			one in x^2 , 2 in x
			and a constant
			term
	$x^2 + x - 6$	A1	
16 (b)	(x+a)(x+b)	M1	
	where $ab = \pm 3$		
	(x + 1)(x + 3)	A1	
17 (a)	Correct	B2	B1 for reflection
	reflection, i.e. $(1, 1) \rightarrow (1, -3)$		in x = −1
	and $(5, 3) \rightarrow$		x = 1
	(5, -5), etc.		
17 (b)	Correct	B2	B1 for correct
	translation, i.e.		translation of
	$(1, 1) \rightarrow (-2, -3),$		one vector
	$(5, 3) \to (2, -1)$		component
18	etc. 6 ² + 11 ²	M1	
10		M1dep	
	$\sqrt{157}$	wildeh	
	12.5	A1	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question	Answer	Mark	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		or 6610		
20 (a) Any product including a prime that makes 28 M1 2 × 2 × 7 or $2^2 \times 7$ A1 20 (b) $2 \times 2 \times 5 \times 7$ M1 140 A1 21 $4(x + 4) = 26$ M1 $4x = 10$ M1dep 2.5 A1 22 0.85 B1 238 ÷ 0.85 M1 280 A1 2 × 12 or 5×12 M1dep 2 × 12 or 5×12 M1dep 24 and 60 A1 24 $\sqrt{\frac{402}{\pi}}$ or 11.3 M1 11.3 × $\pi + 2 \times 11.3$ M1dep [58, 58.2] A1 Arc from A cutting given ray A1 Angle must be between		Their 6610 ÷ 40	M1dep	
including a prime that makes 28 $2 \times 2 \times 7$ or $2^2 \times 7$ 20 (b) $2 \times 2 \times 5 \times 7$ 140 A1 21 $4(x + 4) = 26$ $4x = 10$ $4x = 10$ $2x = 10$ $3x = 10$		165.25	A1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 (a)	, ,	M1	
		that makes 28		
			A1	
21 $4(x + 4) = 26$ M1 $4x = 10$ M1dep 2.5 A1 2.5 B1 $2.38 \div 0.85$ M1 2.5 M1	20 (b)	$2 \times 2 \times 5 \times 7$	M1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140	A1	
	21	4(x+4)=26	M1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4x = 10	M1dep	
		2.5	A1	
	22	0.85	B1	
		238 ÷ 0.85	M1	
		280	A1	
	23	36 ÷ 3 or 12	M1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 × 12 or 5 × 12	M1dep	
$ \sqrt{\frac{402}{\pi}} \text{ or } 11.3 $ $ 11.3 \times \pi + 2 \times 11.3 \text{ M1dep} $ $ [58, 58.2] \qquad \text{A1} $ 25 Arc from A M1 cutting given ray Arc centred on intersection and A1 Angle must be between		24 and 60	A1	
[58, 58.2] A1 25 Arc from A M1 cutting given ray Arc centred on intersection and A1 Angle must be between	24	$\sqrt{\frac{402}{\pi}}$ or 11.3	M1	
Arc from A M1 cutting given ray Arc centred on intersection and A1 Angle must be between		$11.3 \times \pi + 2 \times 11.3$	M1dep	
Arc centred on A1 Angle must be intersection and between		[58, 58.2]	A1	
Arc centred on A1 Angle must be intersection and between	25		M1	
intersection and between		cutting given ray		
			A1	_
		crossing original		[58, 62]
arc plus line drawn		·		

Paper 3

Question	Answer	Mark	Comments
1 (a)	0	B1	
1 (b)	2	B1	
2	19.5 ≤ <i>l</i> < 20.5	B1	
3	9	B1	

Question	Answer	Mark	Comments
4	Plan	В3	B1 each Accept front
			and side
			elevation
			labelled the
			other way round
	Front elevation		
	[
	Side elevation		
5	1, 2, 4, 5 10, 20	B2	B1 for 4 or 5
	1, 2, 4, 0 10, 20	52	factors
6	Diameter	B1	
7	3 × 4 × 2	M1	
	24	A1	
8 (a)	16	B1	
8 (b)	4	B2	B1 for 100
			B1 for 0.4
9 (a)	5 × 4.50	M1	
	22.50	A1	
9 (b)	3 × 3.50 + 3.00 +	M1	M1 for 5 people
	2.00 + 1.00		identified and
	2 v 2 E0 v 2 00 ·	A1	off peak prices All six identified
	3 × 3.50 + 3.00 + 2.00 + 1.00	AI	and off peak
			prices
	16.50	A1	16.5 is A0
			sc2 for 21
9 (c)	20 × 4.50 – 55	M1	
	35	A1	
10	98 ÷ 7 or 14	M1	
	42 or 56	A1	
	Tom 20, 10, 10, 2	A1	Either order
	Jerry 50, 5, 1		
11	56 ÷ 8	M1	
	7	A1	

Question	Answer	Mark	Comments
12	180 – 67 – 38	M1	
	75	A1	
13 (a)	3 × 8 × 6 or 144 or 3 × 2 × 4 or 24	M1	
	144 ÷ 24 (= 6)	A1	
13 (b)	720 ÷ 144 or 5 (layers)	M1	
	Small 12	A1	
	Large 3	A1	
14	350 ÷ 79 or 750 ÷ 185	M1	Allow mixed units
	4.43 or 4.05	A1	
	small packet	A1	
15	30 mins or 0.5 hours	B1	
	75 km	B1	
	60 km/h	B1	
16 (a)	More ice	B1	
	cream sold as temperature increases		
16 (b)	Line of best fit	M1	
	480	A1ft	ft their line of best fit
17	17 or 37	B2	B1 for 26, 50, 65 or 82
18	1.03	B1	
	3000 × 1.03 ³	M1	
	3278.18	A1	
19 (a)	<i>x</i> ⁹	B1	
19 (b)	<i>x</i> ¹⁰	B1	
20	(10 4)	B2	B1 for each component
21	30	B1	
	38	B1	
22		B2	B1 for any enlargement that reduces the size of the shape and keeps the sides in relative ratio. B1 for any 3 sides correct.

Question	Answer	Mark	Comments
23	-2, -1, 0, 1, 2, 3	B2	B1 for -3, -2, -1, 0, 1, 2, 3 B1 for -2, -1, 0, 1, 2, 3, 4
24 (a)	A and C	B1	
24 (b)	A and D	B1	
25	CAB	B2	B1 for 1 correct
26	1.5 ÷ 2	M1	
	0.75	A1	
27	3x + 2y = 2 and 3x + 12y = 27 or $6x + 4y = 4$ and $x + 4y = 9$	M1	
	x = -1	A1	
	y = 2.5	A1	
28 (a)	$\frac{4}{10} \text{ marked on}$ $\text{red and } \frac{6}{10}$ marked on blue	B1	
28 (b)	$\frac{4}{10} \times \frac{4}{10} \text{ or}$ $\frac{6}{10} \times \frac{6}{10}$	M1	
	$\frac{4}{10} \times \frac{4}{10} +$	M1dep	

A1

oe

Question	Answer	Mark	Comments
29	x = 2 and -3	B1	
30 (a)	(x + 5)(x - 5)	B1	
30 (b)	$x^2 + 4x + 4$ or $x^2 + 2x + 1$	M1	(x + 2 + x + 1)(x + 2 - (x + 1))
	$x^2 + 4x + 4 - (x^2 + 2x + 1)$	M1dep	(2x + 3)(1)
	Shows subtraction of terms clearly	A1	
31 (a)	12 × sin 32 = 6.359 = 6.36 (2dp)	B1	
31 (b)	$\pi \times 6.36 \times 12$	M1	
	[236.6, 240]	A1	
32	$\frac{\sqrt{3}}{2}$	B1	

0.52