Collins

AQA

GCSE
PHYSICS

SET B - Higher Tier

Author: Lynn Pharaoh

Answers

Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images Cover: © EMILIO SEGRE VISUAL ARCHIVES/AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY \& © Shutterstock.com/Jurik Peter
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302184
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data
A CIP record of this book is available from the British Library.

Commissioning Editor: Rachael Harrison
Project Leaders and Management: Natasha Paul and Chantal Addy
Author: Lynn Pharaoh
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
03.4	$12=I \times 500$ $I=\frac{12}{500}$ 1 mark for sub- Ammeter reading $=$ $0.024(A)$ 1 mark for rear- ranging 1 mark for answer Correct answer with no working shown $=$ 3 marks Allow ecf from 03.2	3	$\begin{aligned} & \text { AO2 } \\ & 4.2 .1 .3 \end{aligned}$
03.5	Ammeter reading would decrease Because graph shows that circuit resistance increases in the dark	1 1	A01 4.2.1.3 AO3 4.2.1.4
04.1	Ammeter in series with wire Variable resistor in correct position to enable the current through the wire to be changed. Voltmeter in correct position ammeter and vari- able resis- tor to be in swap -ped plac- es, or next to each other, as long as they are in series	1 1 1	A01 4.2.1.4
04.2	Current is directly proportional to potential difference Yes (wire is an ohmic conductor)	1 1	AO3 4.2.1.4 A01 4.2.1.4
04.3	Curve through origin as shown Negative section of line shown	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	A01 4.2.1.4
04.4	As the current increases, the filament gets hotter. Filament resistance increases as its temperature increases	1 1	AO1 4.2.1.4

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
05.1	Either: Alpha particles are not very penetrating Or: Alpha particles have low penetrating power And: Either: So alpha particles would not be able to pass out through the patient's body Or: So alpha particles could not be detected outside the patient's body	1 mark for either statement 1 mark for either statement	2	A01 4.4.2.1 4.4.3.3
05.2	It allows sufficient tim conduct the investiga (before it has all deca Patient is not exposed radiation for too long		1 1	A01 4.4.3.3
05.3	Patient's body remains contaminated (for a sig period of time) Gamma (and beta) rad be emitted from the p could reach other peop This radiation could har be a hazard to other p	dioactive/ ficant ion will ent and /would ple	1 1 1	A01 4.4.3.3 4.4.2.4
06.1	$\begin{aligned} \left(E_{\mathrm{p}}\right. & =m g h) \\ & =0.05 \times 10 \times 0.42 \end{aligned}$ Gain in gravitational potential energy = $0.21(\mathrm{~J})$	1 mark for sub- stitution into correct equation 1 mark for answer Correct answer with no working shown = 2 marks	2	$\mathrm{AO} 2$ 4.1.1.2
06.2	$\begin{aligned} \left(E_{\mathrm{k}}\right. & \left.=\frac{1}{2} m \mathrm{v}^{2}\right) \\ E_{\mathrm{k}} & =\frac{1}{2} \times 0.05 \times 2.0^{2} \\ & =0.1 \mathrm{~J} \end{aligned}$ Kinetic energy (accept 0.1)	1 mark for substitution into correct equation 1 mark for answer Correct answer with no working shown = 2 marks	2	AO2 4.1.1.2
06.3	Energy is dissipated / tr to the surroundings / a energy / sound energy	sferred hermal	1	A01 4.1.2.1

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
	Place the measuring cylinder under the spout of the displacement can. Lower the pebble into the can using the thread attached. Measure the volume of water in the measuring cylinder.	1	AOB

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
09.4	${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{39}^{90} \mathrm{Y}+\underset{-1}{0} \mathrm{e}$	1 mark for both correct numbers for yttrium 1 mark for both correct numbers for the beta particle	2	AO2 4.4.2.2
09.5	$\frac{1}{16}$		1	AO2 4.4.2.3
09.6	Alpha particles (from t uranium) only travel a air/are not very penetr Beta particles (from th fragments) can travel metres in air/are more than alpha particles	cm in ing fission eral netrating	1 1	A01 4.4.2.1
09.7	Caesium-137 Krypton-85		1	AO3 4.4.3.2
10.1	Material regains its o erties if change is rev	al prop-	1	A01 4.3.1.2
10.2	$40\left({ }^{\circ} \mathrm{C}\right)$		1	AO3 4.3.2.3
10.3	10 (minutes)		1	AO3 4.3.2.3
10.4	Energy supplied by heater $=50 \times 10 \times 60$ $=30000$ (J) $30000=0.10 \times L$ $L=\frac{30000}{0.10}$ Specific latent heat of fusion = 300000 (J/kg)	1 mark for substitution into correct equation 1 mark for calculation of energy supplied Allow ecf from 10.3 1 mark for substitution into correct equation 1 mark for rearranging 1 mark for answer Allow ecf from calculation of energy supplied Correct answer with no working shown $=5$ marks	5	AO2 4.1.1.4

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
10.5	Specific heat capacity is larger than in the liq Temperature rise in th state slower/lower rate liquid state	solid state id state solid han in the	1 1	AO3 4.3.2.2
11.1	$\begin{aligned} & (V=I R) \\ & 9=I \times 15 \\ & I=\frac{9}{15} \\ & \text { Current } \approx 0.6 \text { (A) } \end{aligned}$	1 mark for substitution into correct equation 1 mark for rearranging 1 mark for answer Correct answer with no working shown = 3 marks Do not accept 0.60 A	3	AO2 4.2.1.3
11.2	Ammeter Y Its maximum current exceeds current in circuit Best (smallest) resolution in that current range / can measure smaller difference in current	If explanation is fully correct but ammeter chosen is wrong because of incorrect current calculated in 11.1, award 3 marks		AO3 4.2.1.3
11.3	(power = potential difference \times current) $P=8.0 \times 0.55$ Power $=4.4 \mathrm{~W}$ (energy transferred = power \times time) Energy supplied $=4.4$ $\times 500=2200 \mathrm{~J}$	1 mark for substitution into correct equation to calculate the power of the heater 1 mark for calculation of power 1 mark for substitution into correct equation to calculate energy supplied Correct answer with no working shown = 3 marks	3	AO2 4.2.4.1 and 4.2.4.2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
02.2	C		1	AO3 4.5.6.1.5
02.3	B		1	AO3 4.5.6.1.5
02.4	Up and down arrows drawn, with down arrow larger than the up arrow Up arrow labelled air resistance Down arrow labelled weight (accept gravity) air resistance	1 mark 1 mark 1 mark	3	$\begin{aligned} & \text { AO2 } \\ & \text { 4.5.1.4 } \end{aligned}$
02.5	Weight (accept gravity) Upthrust		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & 4.5 .1 .3 \\ & 4.5 .5 .1 .2 \end{aligned}$
03.1	$\begin{aligned} & \text { Speed }=\frac{9.42 \times 10^{11}}{3.15 \times 10^{7}} \\ & \text { Speed }=2.99 \times 10^{4} \mathrm{~m} / \mathrm{s} \end{aligned}$	1 mark for substitution and rear-rangement of speed equation 1 mark for evaluation Correct answer with no working shown = 2 marks Additional 1 mark for correct answer given in standard form and to 3 sig figs	2 1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .6 .1 .2 \end{aligned}$

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
08.2	$\left.\begin{array}{l\|l}\begin{array}{l}\text { (Momentum }=m \mathrm{v}) \\ \text { Momentum }=1000 \times \\ 5.0=5000\end{array} & \begin{array}{l}1 \text { mark } \\ \text { for sub- } \\ \text { stitution } \\ \text { and eval- } \\ \text { uation } \\ \text { of van's } \\ \text { momen- } \\ \text { tum }\end{array} \\ 5000=(800 \times 4.0)+ & \begin{array}{l}\text { before } \\ \text { the colli- } \\ \text { sion } \\ 1 \text { mark } \\ \text { for sub- } \\ \text { stitution } \\ \text { into }\end{array} \\ \text { momen- } \\ v=\frac{5000-3200}{1000} & \begin{array}{l}\text { mom con- } \\ \text { tum } \\ \text { servation } \\ \text { equation } \\ \text { and rear- }\end{array} \\ \text { ranging }\end{array}\right\}$	3	AO2 4.5.7.2
09.1	Level 2: Coherent, detailed description presented in a logical sequence leading to a current (or pd) being induced in the secondary coil. For the maximum mark the 'step-down' aspect must be described $3-4$ Level 1: Some relevant content but may not be presented in a logical sequence $1-2$ No relevant content 0 Indicative content: A step-down transformer is used to reduce the potential difference In a step-down transformer, the secondary pd is smaller than the primary pd The current in the primary is a.c. The primary current induces/creates a magnetic field in the iron core. The magnetic field is changing The changing magnetic field induces a current (or pd) in the secondary coil	4	A01 4.7.3.4

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer(s) \& Extra info \& Mark(s) \& AO/Spec ref. \\
\hline 09.2 \& \[
\begin{aligned}
\& \frac{230}{12}=\frac{400}{\begin{array}{c}
\text { number of } \\
\text { turns in } \\
\text { sccondary coil }
\end{array}} \\
\& \begin{array}{l}
\text { Number of turns in } \\
\text { secondary coil }=20.9 \\
= \\
21 \text { to nearest whole } \\
\text { number }
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
1 mark for substitution into correct equation and rearranging \\
1 mark for evaluation \\
Correct answer with no working shown = 2 marks \\
Additional 1 mark for whole number
\end{tabular} \& 2

1 \& $$
\mathrm{AO2}
$$

4.7.3.4

\hline 09.3 \& | $\begin{aligned} & \left(V_{\mathrm{s}} \times I_{\mathrm{s}}=V_{\mathrm{p}} \times I_{\mathrm{p}}\right) \\ & 12 \times I_{\mathrm{s}}=230 \times 0.20 \\ & I_{\mathrm{s}}=\frac{230 \times 0.20}{12} \end{aligned}$ |
| :--- |
| Secondary current = $3.8 \text { (A) }$ | \& | 1 mark for substitution into correct equation and rear-rangement |
| :--- |
| 1 mark for evaluation |
| Correct answer with no working shown = 2 marks |
| Additional 1 mark for 2 significant figures | \& 2

1 \& | $\mathrm{AO2}$ |
| :--- |
| 4.7.3.4 |

\hline 10.1 \& | Independent variable: (attached to string) |
| :--- |
| Dependent variable: a |
| Control variable: mass (accept same glider or track set up or any oth priate control variable) | \& | leight |
| :--- |
| eleration |
| f glider) ame air appro- | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \text { AO3 } \\
& 4.5 .6 .2 .2
\end{aligned}
$$
\]

\hline
\end{tabular}

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
10.2	speed $=\frac{\text { length of glider }}{\text { time to pass }}$ through first light gate	1 mark for correct equation 1 mark for sub- stitution speed $=\frac{0.12}{0.80}=0.15$ (m/s)	3	AO2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
11.1	Level 3: A coherent account explaining both thinking and braking distance with the effect of at least three factors considered for each	5-6	6	A01$\begin{aligned} & 4.5 .6 .3 .1 \\ & 4.5 .6 .3 .2 \\ & 4.5 .6 .3 .3 \end{aligned}$
	Level 2: A clear account explaining both thinking and braking distance with the effect of two factors considered for each	3-4		
	Level 1: Some relevant comments but lacks detail	1-2		
	No relevant content	0		
	Indicative content: Thinking distance is the distance travelled by the car during the time that the driver is reacting to an emergency Braking distance is the distance travelled whilst the brakes are being applied Thinking distance + braking distance = stopping distance			
	Thinking distance can increase if the driver: - is tired or - has consumed drugs or alcohol or - is distracted by other people in the car or by other events going on outside the car Braking distance can be increased by: - the road surface, for example a wet or icy road, or - poor condition of the tyres or - poor condition of the brakes - the gradient of the road			
11.2	Both thinking distance braking distance increas speed Thinking distance increa steadily with speed But braking distance inc an increasing rate with	and e with ses reases at speed	1 1 1	AO3 4.5.6.3.1

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
11.3	Braking distance $=$ $30(\mathrm{~m})$ (accept 29 to 31)	1 mark for correct braking distance extract- ed from graph (W = F s) $200000=F \times 30$ Average braking force $=6667$ (N) (accept 6500 to 6900)	for sub- stitution into equation for work done 1 mark for eval- uation	4.5 .6 .3 .4
		4.5 .2		

