Collins

AQA

GCSE
PHYSICS

SET B - Foundation Tier

Author: Lynn Pharaoh

Answers

Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images Cover: © EMILIO SEGRE VISUAL ARCHIVES/AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY \& © Shutterstock.com/Jurik Peter
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302177
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data
A CIP record of this book is available from the British Library.

Commissioning Editor: Rachael Harrison
Project Leaders and Management: Natasha Paul and Chantal Addy
Author: Lynn Pharaoh
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
01.1	alpha	Only one box ticked	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.4 .2 .1 \end{array}$
01.2	gamma	Only one box ticked	1	$\begin{aligned} & \hline \text { AO1 } \\ & \text { 4.4.2.1 } \end{aligned}$
01.3	beta	Only one box ticked	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.4 .2 .1 \end{array}$
01.4	gamma	Only one box ticked	1	$\begin{array}{l\|} \hline \text { AO1 } \\ 4.4 .2 .1 \end{array}$
01.5	alpha	Only one box ticked	1	AO1 \|4.4.2.1
01.6	alpha	Only one box ticked	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.4.2.1 } \\ \hline \end{array}$
02.1	Two of: Volume (of hot water) (accept reference to using $100 \mathrm{~cm}^{3}$ of water each time) Temperature drop/fall $\left(80^{\circ} \mathrm{C}\right.$ to $60^{\circ} \mathrm{C}$) Use same beaker and lid Room temperature constant	Two correct control variables for 1 mark each	2	$\begin{aligned} & \hline \text { AO2 } \\ & 4.1 .2 .1 \end{aligned}$
02.2	Increasing the num bubble wrap aro increases the tim temperature to to $60^{\circ} \mathrm{C}$. Increasing the n bubble wrap aro decreases the th transferred to th each second	mber of layers of und the beaker e taken for the rop from $80^{\circ} \mathrm{C}$ mber of layers of und the beaker rmal energy surroundings	1 1	$\begin{aligned} & \text { AO3 } \\ & 4.1 .2 .1 \end{aligned}$
02.3	Additional bar 1 with height =	wn in position 0	1	$\begin{array}{\|l\|} \hline \text { AO2 } \\ 4.1 .2 .1 \end{array}$
02.4	Expanded polyst	rene	1	$\begin{array}{\|l\|} \hline \text { AO3 } \\ 4.1 .2 .1 \end{array}$
03.1	A source of ene replenished/will	y that can be not run out	1	$\begin{aligned} & \hline \text { AO1 } \\ & \text { 4.1.3 } \end{aligned}$
03.2	Any one from: biofuel; wave;	nd; solar; tidal; droelectric power	1	$\begin{aligned} & \mathrm{AO1} \\ & 4.1 .3 \end{aligned}$
03.3	National Grid		1	$\begin{aligned} & \hline \mathrm{AO1} \\ & 4.2 .4 .3 \end{aligned}$
03.4	ive	1 mark for one correct line A maximum of three lines drawn	2	$\begin{aligned} & \hline \text { AO1 } \\ & 4.2 .3 .2 \end{aligned}$
03.5	Earth	Only one box ticked	1	$\begin{aligned} & \mathrm{AO1} \\ & 4.2 .3 .2 \end{aligned}$

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer(s) \& Extra info \& Mark(s) \& AO/Spec ref. \\
\hline 03.6 \& \begin{tabular}{l}
Power = 230
\[
\times 3.0
\] \\
Power \(=690\) \\
Unit: W (accept watt)
\end{tabular} \& \begin{tabular}{l}
1 mark for substitution into correct equation 1 mark for answer Correct answer with no working shown = 2 marks \\
1 mark for unit
\end{tabular} \& 2

1 \& | AO2 |
| :--- |
| 4.2.4.1 |
| A01 |
| 4.2.4.1 |

\hline 04.1 \& $1 \times 10^{-10} \mathrm{~m}$ \& Only one box ticked \& 1 \& $$
\begin{aligned}
& \hline \mathrm{AO1} \\
& 4.4 .1 .1
\end{aligned}
$$

\hline 04.2 \& Ball of positive Electrons (accept embedded throu \& | harge |
| :--- |
| negative charge) ghout the ball | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{AO1} \\
& 4.4 .1 .3
\end{aligned}
$$
\]

\hline 04.3 \& | Positive charge concentrated in nucleus |
| :--- |
| Electrons surround nucleus | \& ccept mass) mall central d (orbit) the \& | 1 |
| :--- |
| 1 | \& | A01 |
| :--- |
| 4.4.1.3 |

\hline 04.4 \& | Neutron |
| :--- |
| Proton |
| (in either order) | \& \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|}
\hline \mathrm{AO1} \\
4.4 .1 .3
\end{array}
$$
\]

\hline 05.1 \& \& | 1 mark for each correct line |
| :--- |
| A maximum of 3 lines | \& 3 \& \[

$$
\begin{aligned}
& \mathrm{AO1} \\
& 4.1 .1 .1
\end{aligned}
$$
\]

\hline 05.2 \& Elastic potential \& ergy \& 1 \& $$
\begin{aligned}
& \hline \text { AO1 } \\
& 4.1 .1 .2
\end{aligned}
$$

\hline 05.3 \& | energy stored $=\frac{1}{2} \times 25 \times 0.12^{2}$ |
| :--- |
| energy stored = 0.18 (J) | \& | 1 mark for substitution 1 mark for answer |
| :--- |
| Correct answer with no working shown = 2 marks | \& 2 \& \[

$$
\begin{aligned}
& \mathrm{AO2} \\
& 4.1 .1 .2
\end{aligned}
$$
\]

\hline 06.1 \& | Level 2: A coherent description of the steps required to demonstrate: repulsion between like charges AND attraction between unlike charges. |
| :--- |
| For the maximum mark, the plan should include the initial step involving charging by friction | \& 3-4 \& 4 \& \[

$$
\begin{aligned}
& \mathrm{AO2} \\
& 4.2 .5 .1
\end{aligned}
$$
\]

\hline
\end{tabular}

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
	Level 1: A clear description of steps that demonstrate EITHER: repulsion between like charges, OR attraction between unlike charges For the maximum mark, the plan should include the initial step involving charging by friction No relevant content Indicative conten The rods can be c rubbing with a cl Rubbing a rod wi transfers electron rod) A charged acetat near to the end of charged acetate repulsion between Or a charged poly brought near to th suspended charged to show repulsion charges. A charged acetat near to the end of charged polythen attraction betwe charges. Or a charged poly brought near to th suspended charged show attraction b charges.	$1-2$ 0 : harged by th. th a cloth s (to or from the rod is brought f a suspended od to show n like charges. thene rod is he end of a polythene rod between like rod is brought f a suspended e rod to show un une thene rod is he end of a d acetate rod to etween unlike		
07.1	Radon gas Radioactive rocks buildings	in soil and	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO3} \\ & 4.4 .3 .1 \end{aligned}$
07.2	5.3		1	$\begin{array}{\|l\|} \hline \mathrm{AO3} \\ 4.4 .3 .1 \end{array}$
07.3	${ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+{ }_{2}^{4} \mathrm{He}$	1 mark each for the two missing numbers	2	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ 4.4 .2 .2 \end{array}$
07.4	${ }_{84}^{218} \mathrm{Po} \rightarrow{ }_{85}^{218} \mathrm{At}+{ }_{-1}^{0} \mathrm{e}$	1 mark each for the three missing numbers	3	$\begin{aligned} & \mathrm{AO2} \\ & 4.4 .2 .2 \end{aligned}$
08.1	At least one of th emitted must cause anoth nucleus to underg	free neutrons er uranium go fission	1 1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.4 .4 .1 \end{array}$
08.2	Kinetic	Only one box ticked	1	AO1 4.4.4.1

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
08.3	Either: Explosion caused by a nuclear weapon Or: Explosion caused by (nuclear) reactor	Allow 'nuclear bomb'	1	AO1 4.4.4.1
08.4	Caesium-137 Krypton-85		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3 4.4.2.4
08.5	They have the lon so will be radioac time/many years causing a hazard (and living things environment) (un	gest half-lives tive for a long to health in the less stored safely)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3 4.4.2.4
08.6	(nuclear) fusion		1	A01 4.4.4.2
09.1	The energy need temperature of 1 by $1^{\circ} \mathrm{C}$	ed to raise the kg of a material	1	$\begin{array}{l\|} \hline \text { AO1 } \\ 4.1 .1 .3 \end{array}$
09.2	Thermometer C Because it covers temperature rang cover range And has best (sm in that temperatu measure smaller change than A or	the required e / B cannot allest) resolution ure range / can temperature D	1 1 1	$\begin{array}{\|l\|} \hline \mathrm{AO3} \\ 4.1 .1 .3 \end{array}$
09.3	Temperature rise $=23.0^{\circ} \mathrm{C}$ (accept $23^{\circ} \mathrm{C}$) $\begin{aligned} & 21260=1.00 \times \\ & c \times 23.0 \end{aligned}$ $\begin{aligned} & c=\frac{21260}{1.00 \times 23.0} \\ & c=924\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right) \end{aligned}$ Answer given to 3 significant figures	1 mark 1 mark for substitution 1 mark for rearranging 1 mark for answer Correct answer with no working shown $=4$ marks 1 mark	5	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ \text { 4.1.1.3 } \end{array}$
10.1	Thermistor		1	AO1 4.2.1.1
10.2	The resistance de smaller as the tem increases	creases/gets mperature	1	AO3 4.2.1.4
10.3	The total resistan decreases (becaus of Q decreases). (Since $I=\frac{V}{R}$) the increases.	ce in the circuit e the resistance mmeter reading	1 1	$\begin{aligned} & \text { AO2 } \\ & 4.2 .1 .4 \end{aligned}$
10.4	400 (Ω)		1	$\begin{aligned} & \mathrm{AO3} \\ & 4.2 .1 .4 \end{aligned}$
10.5	Total resistance $=800+400$ Total resistance $=1200(\Omega)$	1 mark	1	$\begin{aligned} & \mathrm{AO2} \\ & 4.2 .2 \end{aligned}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
10.6	Potential difference = current \times resistance	Accept $V=I R$	1	$\begin{aligned} & \text { AO1 } \\ & 4.2 .1 .3 \end{aligned}$
10.7	$\begin{aligned} & 6.0=I \times 1200 \\ & I=\frac{6.0}{1200} \\ & I=0.0050(\mathrm{~A}) \\ & \text { (accept } 0.005) \end{aligned}$	1 mark for substitution 1 mark for rearranging 1 mark for answer Allow error carried forward from 10.5 Correct answer with no working shown $=3$ marks	3	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ 4.2 .1 .3 \end{array}$
10.8	Power = (current) ${ }^{2} \times$ resistance	Accept $P=l^{2} R$	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.2 .4 .1 \end{array}$
10.9	$\begin{aligned} & \text { Power }=0.0050^{2} \\ & \times 800 \\ & \text { Power }=0.02(\mathrm{~W}) \\ & \text { Power }=20(\mathrm{~mW}) \end{aligned}$	1 mark for substitution 1 mark for answer Allow error carried forward from 10.7 1 mark for answer in mW Correct answer (in mW) with no working shown = 3 marks	3	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ 4.2 .4 .1 \end{array}$
11.1		```1 mark for ammeter in a complete circuit 1 mark for voltmeter in a complete circuit in parallel with X 1 \text { mark for} variable resistor in the main circuit```	3	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.2.1.4 } \end{array}$
11.2	$\begin{aligned} & \text { Charge }= \\ & \text { current } \times \text { time } \end{aligned}$	Accept $Q=I t$	1	$\begin{array}{l\|} \hline \text { AO1 } \\ 4.2 .1 .2 \end{array}$
11.3	$\begin{aligned} & \text { Charge }= \\ & 0.12 \times 10 \\ & \text { Charge }=1.2(\mathrm{C}) \end{aligned}$	1 mark for substitution 1 mark for answer Correct answer with no working shown $=2$ marks	2	$\begin{array}{\|l} \mathrm{AO2} \\ 4.2 .1 .2 \end{array}$
11.4	```Energy = charge \times potential difference```	Accept $E=Q V$	1	AO1 4.2.4.2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
11.5	```Energy transferred = 1.2 x 0.60 Energy transferred = 0.72 (J)```	1 mark for substitution 1 mark for answer Allow error carried forward from 11.3 Correct answer with no working shown = 2 marks	2	$\begin{aligned} & \text { AO2 } \\ & 4.2 .4 .2 \end{aligned}$
11.6	Constant up to $0.7 \mathrm{~V} / 0.14 \mathrm{~A}$ and then increases EITHER: at least two calculations using $R=\frac{V}{l}$ to obtain resistance values at different currents OR: reference made to trend in the change in current corresponding to a change in potential difference	1 mark 1 mark 1 mark for justification	3	$\begin{aligned} & \hline \mathrm{AO3} \\ & 4.2 .1 .3 \\ & 4.2 .1 .4 \end{aligned}$
12.1	Molecules in (liqu much closer toge water vapour in n per unit volume Water vapour is space compared Liquid water is de water vapour in n particles per unit	id) water are ther than in umber of particles mostly empty with liquid water nser than number of volume	1 1 1	$\begin{array}{\|l\|} \hline \mathrm{AO3} \\ 4.3 .1 .1 \end{array}$
12.2	Level 3: A coherent plan covering all steps presented in a logical order detailing all the apparatus used. The plan could be followed by another person to obtain a valid result for the density of the oil.	5-6	6	$\begin{aligned} & \mathrm{AO2} \\ & 4.3 .1 .1 \end{aligned}$

Question	Answer(s)	Extra info	Mark(s)
	AO/Spec ref.		
	Level 2: A clear plan covering most of the major steps presented in a logical order detailing the apparatus used. The plan could be followed by another person to obtain valid results for the mass and volume of the oil.		
	Level 1: Some relevant statements but the plan could not be followed by another person to obtain valid results.	1-2	
No relevant content	0		
Indicative content: Mass of empty measuring cylinder is measured Mass measured with (electronic) balance Oil poured into measuring cylinder Volume of oil in measuring cylinder recorded Mass of measuring cylinder with oil measured (with balance) Mass of oil found by subtracting the mass of the empty measuring cylinder from the mass of the cylinder with oil Density found by dividing the mass of oil by the volume			

Paper 2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
01.1		1 mark for each correct name in the sequence shown Neutron star and black hole in either order	4	A01 4.8.1.2
01.2	The explosion of a massive star		1	$\begin{array}{\|l\|} \hline \mathrm{AO} 1 \\ 4.8 .1 .2 \end{array}$
02.1	Velocity of an object is its speed in a given/specific direction	Allow 'speed is a scalar, velocity is a vector'	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.5 .6 .1 .3 \end{array}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
02.2	$\begin{aligned} & \text { Distance }= \\ & 1.5 \times 60 \\ & \text { Distance }=90(\mathrm{~m}) \end{aligned}$	1 mark for substitution 1 mark for answer Correct answer with no working shown $=2$ marks	1 1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .6 .1 .2 \end{aligned}$
02.3	accelerating	Only one box ticked	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .6 .1 .5 \end{aligned}$
02.4	Three different stages in the following order: Constant acceleration, constant velocity, constant deceleration/ negative acceleration Or acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$; constant velocity of $15 \mathrm{~m} / \mathrm{s}$; deceleration of $7.5 \mathrm{~m} / \mathrm{s}^{2}$ / acceleration of $-7.5 \mathrm{~m} / \mathrm{s}^{2}$ Or time intervals specified for acceleration, constant velocity, deceleration	1 mark each, must be in the order shown	3	$\begin{aligned} & \hline \text { AO3 } \\ & 4.5 .6 .1 .5 \end{aligned}$
03.1	diffuse	Only one box ticked	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .2 .6 \end{aligned}$
03.2	opaque	Only one box ticked	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .2 .6 \\ & \hline \end{aligned}$
03.3	black	Only one box ticked	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .2 .6 \end{aligned}$
03.4	speed	Only one box ticked	1	$\begin{aligned} & \text { AO1 } \\ & \text { 4.6.2.6 } \end{aligned}$
03.5	black	Only one box ticked	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .2 .6 \end{aligned}$
04.1	Distance travelle during the drive	by the car reaction time.	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.5.6.3.1 } \\ \hline \end{array}$
04.2	One from: Tiredness Drugs Alcohol (A named source of) distraction (such as mobile phone)	Any one for 1 mark	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.5 .6 .3 .2 \end{aligned}$
04.3	Distance travelle the brakes are b	by the car while ing applied	1	$\begin{array}{\|l\|} \hline \mathrm{AO1} \\ \text { 4.5.6.3.1 } \\ \hline \end{array}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.	Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
04.4	One from: Wet road Icy road Condition of tyres Condition of brakes Gradient of road Surface of road	Any one for 1 mark	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.5 .6 .3 .3 \end{array}$	07.1	Weight = mass \times gravitational field strength	Accept $W=m g$	1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.5 .1 .3 \end{array}$
					07.2	500 g converted to $0.5(00) \mathrm{kg}$ Weight = $0.5(00) \times 9.8=$ 4.9 (N)	1 mark for unit conversion 1 mark for substitution and answer Correct answer with no working shown = 2 marks	2	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ \text { 4.5.1.3 } \end{array}$
04.5	Thinking distance: increases steadily with increasing speed		1	$\begin{array}{\|l\|} \hline \text { AO3 } \\ 4.5 .6 .3 .1 \end{array}$					
	Braking distance: increases with increasing speed (Braking distance:) at an increasing rate		1 1	4.5.6.3.1	07.3	According to Newton's Third Law, the bench exerts a force on the book equal in size to the book's weight. The force of gravity is a noncontact force.	1 mark for each correctly substituted word	3	A01$\begin{aligned} & 4.5 .6 .2 .3 \\ & 4.5 .1 .2 \end{aligned}$
04.6	Thinking distance $=16 \mathrm{~m}$ (accept 15-17) Braking distance $=42 \mathrm{~m}$ (accept 41-43) Stopping distance $=58$ (m) (accept 56-60)	1 mark	3	$\begin{array}{\|l\|} \hline \text { AO2 } \\ 4.5 .6 .3 .1 \end{array}$					
		1 mark Correct			07.4	Work done = force \times distance moved	Accept $W=F d$	1	$\begin{aligned} & \mathrm{AO1} \\ & 4.5 .2 \end{aligned}$
		answer with no working 3 marks			07.5	$100 \mathrm{~cm}$ converted to 1(.00) m Work done $=$ $4.9 \times 1(.00)=$ 4.9 (N m)	1 mark for unit conversion 1 mark for substitution and answer Correct answer with no working shown = 2 marks	2	$\begin{aligned} & \text { AO2 } \\ & 4.5 .2 \end{aligned}$
04.7	Kinetic energy to thermal energy	Only one box ticked	1	$\begin{array}{\|l\|} \hline \mathrm{AO1} \\ 4.5 .6 .3 .4 \end{array}$					
04.8	Temperature of brakes rises Or Brakes become worn	Accept either statement for 1 mark	1	$\begin{array}{\|l\|} \hline \mathrm{AO1} \\ 4.5 .6 .3 .4 \end{array}$					
					07.6	Gravitational potential energy store	Only one box ticked	1	AO1 4.1.1.2
05.1	Red-shift is the observed increase in wavelength of the light from distant galaxies	Only one box ticked	1	A01					
					08.1	Demonstrate that nail is attracted to the core/electromagnet when switch closed/current flowing. Observe nail fall/cease to be attracted when switch opened		1 1	AO1 4.7.2.1
05.2	The speed at which a galaxy recedes gets larger as the distance gets larger Speed of galaxy receding is directly proportional to distance	1 mark for a basic conclusion Or 2 marks for a more specific conclusion	2	$\begin{array}{\|l\|} \hline \mathrm{AO} \\ 4.8 .2 \end{array}$	08.2	Total weight = 2.2 (N)		1	$\begin{aligned} & \hline \text { AO2 } \\ & 4.7 .2 .1 \\ & \hline \end{aligned}$
					08.3	Level 2: A clear plan covering all steps presented in a logical order. The plan could be followed by another person to obtain valid results	3-4	4	$\begin{aligned} & \hline \text { AO2 } \\ & 4.7 .2 .1 \end{aligned}$
05.3	Hot and very	Only one box	1	AO1					
				$4.8 .2$		Level 1: Some relevant statements but the plan could not be followed by another person to obtain valid results.	1-2		
06.1	gravity		1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.8 .1 .3 \end{aligned}$					
06.2	The greater the distance from the Sun, the lower the orbital speed		1	$\begin{array}{\|l\|} \hline \mathrm{AO3} \\ \text { 4.8.1.3 } \end{array}$					
06.3	$13 \mathrm{~km} / \mathrm{s}$	Only one box ticked	1	$\begin{aligned} & \hline \text { AO2 } \\ & \text { 4.8.1.3 } \end{aligned}$					
06.4	Europa	Only one box ticked	1	$\begin{array}{\|l\|} \hline \mathrm{AO3} \\ 4.8 .1 .3 \end{array}$		results. No relevant content	0		

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
	Indicative content: Close the switch Adjust the variable resistor to set the current to a chosen value Record ammeter reading Choose an ammeter with an appropriate resolution for the range of current readings (use trial runs as necessary) Gradually add masses in small increments to the bar Until the bar falls Care should be taken to avoid injury (e.g. to the feet) when the iron bar and masses fall By placing soft material below the electromagnet Add the weight of the bar to the weight of the masses attached to the bar to get the attractive force exerted by the electromagnet Repeat the procedure and calculate an average total weight for that current Repeat with several different current values To produce several data sets of current and total weight/ attractive force			
08.4	To minimise effect of (random) errors Or To help spot anomalous data Or To check results are repeatable	1 mark for either statement	1	AO3 4.7.2.1
08.5	$\begin{aligned} & 4.2 \\ & 5.2 \end{aligned}$	1 mark if both values are correct	1	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ \text { 4.7.2.1 } \end{array}$
08.6	Two points correctly plotted Straight line of best fit drawn that passes through the origin	1 mark if both points correctly plotted 1 mark for suitable line of best fit	2	$\begin{array}{\|l\|} \hline \text { AO2 } \\ \text { 4.7.2.1 } \end{array}$
08.7	Increasing the current increases the strength of the electromagnet And either: The strength is directly proportional to the current Or: Doubling the current doubles the strength	1 mark for a basic conclusion Or 2 marks for a detailed conclusion referring to direct proportionality	2	$\begin{array}{\|l\|} \hline \mathrm{AO} \\ \text { 4.7.2.1 } \end{array}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
09.1	gamma		1	A01 \|4.6.2.1
09.2	ultraviolet		1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.6.2.4 } \end{array}$
09.3	gamma		1	A01 \|4.6.2.3
09.4	infrared		1	$\begin{array}{\|l\|} \hline \mathrm{AO1} \\ 4.6 .3 .1 \end{array}$
09.5	(Wave) speed $=$ frequency \times wavelength	Accept: $v=f \lambda$	1	A01 4.6.1.2
09.6	$\begin{aligned} & 3.0 \times 10^{8}= \\ & \text { frequency } \times 2.0 \\ & \times 10^{-10} \\ & \text { frequency }= \\ & \frac{3.0 \times 10^{8}}{2.0 \times 10^{-10}} \\ & \text { Frequency }= \\ & 1.5 \times 10^{18} \\ & \text { Unit: } \mathrm{Hz} \end{aligned}$	1 mark for substitution 1 mark for rearranging 1 mark for answer Correct answer with no working shown = 3 marks 1 mark for unit	3 1	AO2 4.6.1.2 A01 4.6.1.2
09.7	Two of: X-ray procedures are a risk to health / can cause (fatal) cancer X-ray procedures on different parts of the body present different sized risks Lower doses give lower risk (of fatal cancer) The higher the (X-ray) dose, the longer the equivalent period of background radiation Some X-ray procedures have doses comparable with background radiation levels The risk of any single X-ray procedure is less than the risk of a 2-week period of background radiation	Any two conclusions for 1 mark each Accept any other sensible conclusion consistent with the data	2	AO3 \| 4.6.2.3
10.1	acceleration = change in velocity time or Acceleration = (change in velocity) \div time	$\begin{aligned} & \text { Accept } a=\frac{\Delta v}{t} \\ & \text { Accept } a= \\ & (v-u) / t \end{aligned}$	1	$\begin{array}{\|l\|} \hline \mathrm{AO1} \\ 4.5 .6 .1 .5 \end{array}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
10.2	$\begin{aligned} & 10=\frac{\text { change in velocity }}{2.0} \\ & \text { Initial velocity } \\ & =0 \\ & \text { Final velocity }= \\ & 10 \times 2.0 \\ & \text { Velocity }=20(\mathrm{~m} / \mathrm{s}) \end{aligned}$	1 mark for substitution 1 mark for indication that initial velocity $=0$ and for rearranging 1 mark for answer Correct answer with no working shown = 3 marks	3	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ 4.5 .6 .1 .5 \end{array}$
10.3	Resultant force = 240 (N)		1	$\begin{array}{\|l} \hline \text { AO2 } \\ 4.5 .6 .1 .5 \end{array}$
10.4	Resultant force $=$ mass \times acceleration	Accept $F=m$ a	1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.5 .6 .2 .2 \end{aligned}$
10.5	$\begin{aligned} & 240=60 \times \\ & \text { acceleration } \\ & \text { Acceleration }= \\ & \frac{240}{60} \\ & \text { Acceleration } \\ & =4.0\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\ & \text { (accept } 4) \end{aligned}$	1 mark for correct substitution 1 mark for rearranging 1 mark for answer Correct answer with no working shown = 3 marks	3	$\begin{aligned} & \text { AO2 } \\ & \text { 4.5.6.2.2 } \end{aligned}$
10.6	Resultant force $=0$ (N)		1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .6 .1 .5 \end{aligned}$
10.7	B	Only one box ticked	1	$\begin{aligned} & \hline \text { AO3 } \\ & 4.5 .6 .1 .5 \end{aligned}$
10.8	D	Only one box ticked	1	$\begin{aligned} & \hline \text { AO3 } \\ & 4.5 .6 .1 .5 \end{aligned}$
11.1	Level 3: A detailed and coherent plan covering all steps presented in a logical order. The plan could be followed by another person to obtain sufficient valid results to confirm the law of reflection. Procedures to ensure and assess accuracy are considered. Level 2: A clear plan covering the major steps presented in a logical order. The plan could be followed by another person to obtain valid results.	5 $3-4$	6	$\begin{aligned} & \text { AO2 } \\ & 4.6 .1 .3 \end{aligned}$

Question	Answer(s)	Extra info	Mark(s)	$\begin{gathered} \text { AO/Spec } \\ \text { ref. } \end{gathered}$
	Level 1: Some relevant statements but the plan could not be followed by another person to obtain valid results.	1-2		
	No relevant content	0		
	Indicative content: Position a plane mirror vertically on a piece of paper Draw a line on the paper along the front edge of the mirror Remove the mirror, and, using a protractor, draw a line at 90° to the first line (the normal) Use a protractor to draw a line at a specific angle to the normal and label this line 'incident ray' Replace the mirror on the paper along the original line Direct a ray of light from a ray box along the line marked incident ray Mark a series of dots along the middle of the reflected ray Join the dots (with a pencil) to show the path of the reflected ray. Measure the angle of reflection with the protractor Repeat for at least 3 different incident angles Repeat for each chosen angle of incidence to assess the accuracy/repeatability of the measurements			
12.1	Independent variable: (resultant) force Dependent variable: acceleration Control variable: mass (of glider) (accept: same glider or same air track set up)		1 1 1	$\begin{aligned} & \text { AO3 } \\ & \text { 4.5.6.2.2 } \end{aligned}$
12.2	(Standard) weights (attached to the string)		1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.5.6.2.2 } \end{array}$
12.3	Glider moves freely/more smoothly / accelerates easily Because friction removed/reduced		1 1	$\begin{aligned} & \hline \text { AO1 } \\ & \text { 4.5.6.2.2 } \end{aligned}$
12.4	$\begin{aligned} & 0.20^{2}-0.10^{2}=2 \\ & \times \text { acceleration } \\ & \times 0.50 \\ & \text { acceleration }= \\ & \frac{0.20^{2}-0.10^{2}}{(2 \times 0.50)} \end{aligned}$ Acceleration $=0.030\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ (accept 0.03)	1 mark for substitution 1 mark for rearranging 1 mark for answer Correct answer with no working = 3 marks	3	$\begin{array}{\|l\|} \hline \text { AO2 } \\ \text { 4.5.6.1.5 } \end{array}$
12.5	Take measureme different forces. Plot a graph of act against force.	ts for a range of cceleration	1 1	$\begin{array}{\|l\|} \hline \text { AO2 } \\ \text { 4.5.6.2.2 } \end{array}$

