Collins

AQA

GCSE
BIOLOGY

SET B - Higher Tier

Author: Kath Skillern

Answers

Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.
All images are © HarperCollinsPublishers and Shutterstock.com
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302146
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.
British Library Cataloguing in Publication Data.
A CIP record of this book is available from the British Library.

Commissioning Editor: Rachael Harrison
Project Leaders and Management: Natasha Paul and Chantal Addy
Author: Kath Skillern
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
01.2	poison		1	A01 4.3.3.2
01.2	any two of: - thorns and hairs to deter animals - specialised leaves which droop or curl when touched - mimicry to trick animals	must include action of how defence works (in bold) do not accept bark, cellulose cell walls, waxy cuticle do not award 3 marks for 3 defences, action of defence must be linked to the defence mechanism	$2+2$	A01 4.3.3.2
01.3	any two of: - skin - mucus - hairs in nose - trachea / bronchi - stomach acid - tears	accept any other reasonable answer	2	A01 4.3.1.6
01.4	any two of: - phagocytosis - antibody production - antitoxin producti (allow descriptions i	on on instead)	2	AO1 4.3.1.6
02.1	tobacco mosaic virus	allow other viral disease, if correct	1	A01 4.3.1.2
02.2	it gives a distinctive 'mosaic' pattern of discolouration on the leaves, which affects the growth of the plant due to lack of photosynthesis	allow other correct answers related to student's answer above	1 1 1	A01 4.3.1.2
02.3	black spot	allow other fungal disease, if correct	1	A01 4.3.1.4
02.4	either: stunted growth caused by nitrate deficiency because nitrate ions needed for protein synthesis and therefore growth or chlorosis caused by magnesium deficiency because magnesium ions needed to make chlorophyll	name of correct ion must be stated - 1 related effect - 1 related reason - 1	3	$\begin{array}{\|l\|} \hline \text { AO1 } \\ 4.3 .3 .1 \end{array}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
03.1	enzymes		1	$\begin{aligned} & \text { AO1 } \\ & 4.2 .2 .1 \end{aligned}$
03.2	proteases break down proteins to amino acids lipases break down lipids to glycerol and fatty acids	accept fats (instead of lipids)	1 1 1 1	A01 4.2.2.1
03.3	amylase, buffer, starch	must be correct order	1	$\begin{aligned} & \text { AO2 } \\ & 4.2 .2 .1 \end{aligned}$
03.4	buffer must be added to the enzyme before the starch is added - as the reaction will start as soon as the enzyme and starch meet if no buffer (or added afterwards) results will not be valid as the pH will be changed after the reaction has started		1 1	$\begin{aligned} & \mathrm{AO2} \\ & 4.2 .2 .1 \end{aligned}$
03.5	iodine plus a drop of water		1	AO2 4.2.2.1
03.6	a control makes it easier to compare colours as the water in the control doesn't contain any starch / so you can be sure all the starch is gone / digested / broken down, if it is the same colour as the control		1 1	$\begin{aligned} & \text { AO2 } \\ & 4.2 .2 .1 \end{aligned}$
04.1	virus bacterium red blood cell leaf cell	all must be in correct order for mark	1	A01 4.1.1.1 4.1.1.2
04.2	to keep specimen flat to retain liquid under it to prevent specimen drying out	allow - to prevent the specimen touching the microscope lens	1 1	A01 4.1.1.2
04.3	smaller field of view with a highpower lens because has greater magnification	or converse: larger with low power lens because smaller magnification. must state reason (i.e. because... for 2 marks, not just high is smaller and low is bigger)	1 1	A01 4.1.1.2 4.1.1.5
04.4	iodine solution		1	$\begin{aligned} & \text { AO1 } \\ & \text { 4.1.1.2 } \end{aligned}$

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
	- if the environment is different, for each group of fish, selection pressure means that different mutations are favoured by natural selection - over a long period of time - different characteristics will develop in the different fish groups - if the barrier were removed / the fish were able to mix again, they would no longer be able to breed and so are considered separate species			
05.1	cerebral cortex		1	$\begin{aligned} & \hline \mathrm{AO1} \\ & 4.5 .2 .2 \\ & \hline \end{aligned}$
05.2	cerebellum		1	A01 4.5.2.2
05.3	medulla		1	A01 4.5.2.2
05.4	A - coordination of complex functions, e.g. learning, memory,emotions and conscious thought B - unconscious / automatic functions, e.g. movement and balance C - unconscious / automatic (and homeostatic), e.g. swallowing, digestion and vomiting, breathing and heart rate	allow specific example of complex function 1 for general function plus second mark for example, for each area	2 2 2	AO2 4.5.2.2
05.5	strong positive correlation / as animal increases in weight so does the size of their brain not directly proportional / body weight increases a lot for a smaller increase in brain / any other comment about the relationship consistent with the graph		1	$\begin{aligned} & \text { AO3 } \\ & 4.5 .1 \\ & 4.5 .2 .1 \end{aligned}$
05.6	either: - a larger animal requires a bigger brain to control / coordinate its living processes or - metabolism of animal / energy demands of brain limits brain size so if the animal is larger it is able to support the energy requirements of a larger brain		1	
05.7	other factors have more effect, e.g. evolution and ecological niche occupied		1	AO2 4.5 .1 4.5 .2 .1
06.1	thymine		1	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .1 .5 \end{aligned}$
06.2	3		1	$\begin{array}{\|l\|} \mathrm{AO1} \\ 4.6 .1 .5 \end{array}$

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
06.3	Level 3: A detailed and coherent explanation is provided with most of the relevant content, which demonstrates a comprehensive understanding of protein synthesis and how it may be disrupted in Leigh syndrome. The response gives logical steps, with reasons.	5-6	$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ 4.6 .1 .5 \end{array}$
	Level 2: A detailed and coherent explanation is provided. The student has a broad understanding of protein synthesis and that errors can cause the wrong protein to be made. The response makes mainly logical steps with some reasoning.	3-4	
	Level 1: Simple descriptions of protein synthesis are made along with reference to errors. The response demonstrates limited logical linking of points.	1-2	
	No relevant content	0	
	Indicative content - proteins consist of chains of amino acids, coded for by a triplet of bases - each protein has a particular number and sequence of amino acids - if this is altered, then the wrong protein is made - transcription happens in the cell nucleus where the DNA is copied - the two DNA strands unzip, complementary bases pair up with bases on the template strand - C pairs with G, U pairs with A to form a strand of mRNA, which travels to the ribosome, where it is translated - the ribosome reads off the triplet codes and carrier molecules bring specific amino acids to the protein chain in the correct order - the amino acids bond together to form a polypeptide chain, which folds to a specific shape to form a protein - Leigh syndrome could be a problem with unzipping, or a problem with transcription the wrong base pairs with the template strand. Or the ribosome may read the codon incorrectly or the carrier molecule brings the wrong amino acid. All of which would cause the wrong protein to be made.		

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
06.4	any two from: - search for genes linked to different types of disease - understanding and treatment of inherited disorders - use in tracing human migration patterns from the past	allow specific correct examples	2	$\begin{aligned} & \text { AO1 } \\ & 4.6 .1 .4 \end{aligned}$
07.1	any one from: - green plants - algae / weed - producers / primary	ry producers	1	
07.2	T. sarasinorum numb and they eat lots of therefore fewer fish the eggs and there a so 'elongated' eats m 'thicklip' numbers d are now in direct com shrimp, not enough	bers increase fish eggs survive from are fewer to eat, more shrimp ecrease as they mpetition for shrimp for all	1 1 1	$\begin{aligned} & \hline \text { AO2 } \\ & 4.7 .1 .1 \\ & 4.7 .1 .3 \\ & 4.7 .2 .1 \end{aligned}$
07.3	live in different hab (1 mark only) T. opudi lives in bush rocks, whereas T. wah the muddy bottom	bitats h cover and ahjui lives on	1 1	AO2 4.7.1.1 4.7.2.1
07.4	any one from: - sewage - fertiliser run-off - toxic chemicals		1	$\begin{aligned} & \mathrm{AO1} \\ & 4.7 .3 .2 \end{aligned}$
07.5	energy (/stored in bi at each stage through waste produ movement and main constant body tempe therefore there is in energy to maintain population at the to	iomass) is lost ucts, respiration, taining a erature sufficient another p	1 1 1	$\begin{aligned} & \text { AO1 } \\ & 4.7 .4 .2 \\ & 4.7 .4 .3 \end{aligned}$
08.1	A - nucleus containi removed from egg B - electric pulse cau fuse with egg cell C - cell fusion D - cell division E - (early-stage) emb into surrogate	ing DNA cell uses skin cell to bryo is implanted	5	$\begin{aligned} & \mathrm{AO} \\ & 4.6 .2 .5 \end{aligned}$
08.2	variation		1	$\begin{array}{\|l\|} \mathrm{AO2} \\ 4.6 .2 .1 \end{array}$
08.3	any two from: plants that reproduce with tubers or runners (1 mark each) bacteria aphids / insects that reproduce asexually any other valid example	accept specific plants, e.g. potatoes, strawberries	2	$\begin{aligned} & \hline \text { AO1 } \\ & 4.6 .1 .1 \end{aligned}$

Question	Answer(s)Extra info	Mark(s)	AO/Spec ref.
08.4	any two from: - only one parent needed - more time and energy efficient as do not need to find a mate - faster than sexual reproduction - many identical offspring can be produced when conditions are favourable - genetically identical, so if parent is well adapted to environment offspring will be too	2	$\begin{array}{\|l\|} \text { AO1 } \\ 4.6 .1 .3 \end{array}$
08.5	the gardener's method: - involves selective breeding - is the traditional method of breeding together individuals with desired characteristics - is the more natural method - takes a long time (many generations) - offspring won't definitely have trait the gardener wants the farmer's method: - involves genetic engineering - is more technical - is faster by transplanting specific genes for desired characteristics - is more expensive - offspring will definitely have the desired traits	2 (two points required) 2 (two points required)	
09.1	population size means the number of individuals of a species that live in a habitat (number) population density is the number of individuals in a given / specific area	1 1	$\begin{array}{\|l\|} \hline \text { AO1 } \\ \text { 4.7.1.1 } \end{array}$
09.2	transect	1	$\begin{array}{\|l\|} \mathrm{AO2} \\ 4.7 .1 .1 \end{array}$
09.3	systematic sampling: at regular intervals (e.g. every 50 cm) intervals must be sufficient to capture the changes in vegetative cover	1 1	$\begin{array}{\|l\|} \text { AO2 } \\ 4.7 .1 .1 \end{array}$
09.4	construct further transects at 10 m intervals / other sensible distance down the path take quadrats at the same distances as before (as suggested in Q09.3) along these transects calculate the means at each quadrat place along the length of the path (add up all the plantains and divide by number of quadrats along the length of the path) to give mean number across the path	1 1 1	$\begin{array}{\|l\|} \hline \text { AO2 } \\ 4.7 .1 .1 \end{array}$
09.5	plants complete with each other for limited resources / many plants at verge, lots of competition plantain leaves are tough / have adapted to being trampled and may out complete more delicate plants, which are trampled in the middle of the path	1 1	$\begin{array}{\|l\|} \text { AO3 } \\ 4.7 .1 \\ 4.7 .1 .3 \\ 4.7 .1 .4 \end{array}$

