Collins

Edexcel

GCSE

Mathematics

SET B - Paper 1 Higher Tier (Non-Calculator)

Author: Keith Gordon

Time allowed: 1 hour 30 minutes

You must have:

- Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

You may not use a calculator

Instructions

- Use black ink or black ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may not be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80 .
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Name: \qquad

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages of your working.

1
$\mathrm{f}(x)=x-3$
Write down an expression for $\mathrm{f}^{-1}(x)$

2 Write down the roots of the equation $(x-2)(x+3)=0$

3 Here is a right-angled triangle $A B C$.

Work out the exact value of the length x.
$x=$
cm
(Total for Question $\mathbf{3}$ is $\mathbf{2}$ marks)
$4 \quad$ Solve $3(x-2)+4=\frac{x}{2}$

5 Work out the surface area of the cuboid shown.

cm^{2}

7 Part of a regular polygon is shown.

How many sides does the polygon have?
(a) Write 2.3×10^{5} as an ordinary number.
(b) Write 0.0005 in standard form.
(c) Work out $2 \times 10^{4} \times 8 \times 10^{3}$

Give your answer in standard form.

9 The graph of $y=2 x^{2}-3 x-5$ is shown.

(a) Write down the values of x when $y=4$.
(b) Write down the coordinates of the minimum point.

10 Here is a square.

Work out the area.

You must show your working.

11 Expand $(x+1)^{2}(x-3)$

12 A cylinder has a base diameter that is $\frac{1}{3}$ of the height.
The volume of the cylinder is 48π
Work out the radius of the base.

Write down the three inequalities that define the region R.

Give your answer in the form $a+b \sqrt{2}$, where a and b are integers.

15 Draw a histogram for the data below.

Height, h cm	Frequency
$5 \leqslant h<10$	15
$10 \leqslant h<20$	35
$20 \leqslant h<35$	30
$35 \leqslant h<45$	15
$45 \leqslant h<50$	5

(a) O is the centre of the circle.

Not drawn accurately

Write down the size of angle a in degrees.

Not drawn accurately

Write down the size of angle b in degrees.
(c) $A B C$ are points on the circumference of a circle, centre O.

SAT is a tangent.
$B C$ is a diameter.

Angle $B A T=32^{\circ}$

Work out the size of angle $C B A$, marked x on the diagram.

You must show your working, which may be on the diagram.

$$
x=
$$

\qquad

17 Work out $64^{\frac{2}{3}}$

The cumulative frequency diagram shows the ages of people at a wedding.

(a) Write down an estimate of the median age.
(b) Work out an estimate of the interquartile range.
(c) The youngest person at the wedding was 5 years old.

Draw a box plot for the data.

$19 O A B C$ is a trapezium.
$\overrightarrow{O A}=\mathbf{a}$
$\overrightarrow{A B}=\frac{3}{2} \mathbf{b}$

Not drawn accurately
(a) Write down the vector $\overrightarrow{O B}$ in terms of \mathbf{a} and \mathbf{b}.
(b) $\overrightarrow{B C}=-\mathbf{a}+\frac{1}{2} \mathbf{b}$

Work out the vector $\overrightarrow{O C}$.

21 The area of a right-angled isosceles triangle is $9 \mathrm{~cm}^{2}$

Work out the perimeter of the triangle.

Give your answer in the form $a+b \sqrt{c}$, where a, b and c are integers.

22 A bag contains 10 counters.
7 of them are red, 3 of them are blue.

Two counters are taken from the bag.
Work out the probability that they are different colours.

23 Simplify fully $\frac{4 x^{2}-4 x-15}{2 x+8} \times \frac{2 x^{2}+5 x-12}{4 x^{2}-9}$
$A(3,10)$ and $\mathrm{B}(7,8)$ are two points.
Work out the equation of the line that is
perpendicular to $A B$
passes through the midpoint of $A B$.

