Collins

AQA

GCSE

PHYSICS

SET B - Paper 2 Higher Tier

Author: Lynn Pharaoh

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a calculator
- the Physics Equation Sheet (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions $06.2,09.1$ and 11.1 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Name:
01.1 Figure 1.1 shows the path of a ray of light through a convex lens.

Figure 1.1

What is the name given to the bending of light at the boundaries between the lens and air?
01.2 Complete the ray diagram in Figure 1.2 to show the formation of an image of the object (O) by the convex lens.

Label the image formed.
Figure 1.2

[4 marks]
01.3 Which two descriptions of the images formed by a convex lens are correct?

Tick two boxes.
Always real \square
Always virtual

Can be either real or virtual

Always upright

Always upside down

Can be either upright or upside down \square
01.4 Which two descriptions of the images formed by a concave lens are correct?

Tick two boxes.

Always real

Always virtual

Can be either real or virtual

Always upright

Always upside down

Can be either upright or upside down

02 Figure 2.1 shows a high diving board at a swimming pool.
A ball is stationary on the diving board.
Figure 2.1

02.1 Identify the two forces acting on the ball in Figure 2.1
1.
2.
02.2 The ball is pushed gently so that it falls over the end of the diving board.

When the ball hits the water surface, it floats and is stationary.
Figure 2.2 is a sketch of a velocity-time graph of the ball's motion, showing three stages in the ball's motion: A, B and C.

Figure 2.2

During which stage in Figure 2.2 is there an upward resultant force on the ball?
Tick one box.
A \square
B \square
C
02.3 During which stage in Figure 2.2 is there no resultant force on the ball? Tick one box.

A

B

02.4 In the space below, draw a free-body force diagram of the ball during stage A of Figure 2.2

Label the forces acting.
02.5 Identify the two forces acting on the ball when it is floating on the water surface.
1.
2.
03.1 The Earth completes one orbit of the Sun in $3.15 \times 10^{7} \mathrm{~s}$

The distance travelled by the Earth in one orbit around the Sun is $9.42 \times 10^{11} \mathrm{~m}$ Calculate the speed of the Earth in its orbit around the Sun.

Give your answer in standard form to three significant figures.
Speed = m / s
03.2 The Sun is in orbit around the centre of the Milky Way galaxy. The mass of the Sun, to the nearest order of magnitude, is $10^{30} \mathrm{~kg}$ The mass of the Milky Way galaxy, to the nearest order of magnitude, is $10^{42} \mathrm{~kg}$ How many times more massive than the Sun is the Milky Way galaxy? Give your answer as an order of magnitude.

Number of times more massive $=$
03.3 The Sun is currently about half way through its lifetime as a main sequence star. In about 5 billion years, the Sun will enter the next stage of its life cycle. Name this next stage.

Suggest how this change could impact on the Earth.
\qquad
\qquad
\qquad
04.1 Astrophysicists observe red-shift in the light from distant galaxies.

Explain what red-shift means.
\qquad
\qquad
04.2 Measurements of red-shift have enabled scientists to deduce that distant galaxies are moving away from the Earth.

They were able to calculate the speed at which the galaxies are receding (moving away).

Figure 4.1 is a sketch graph showing how the recession speed of galaxies varies with their distance measured from the Earth.

Figure 4.1

Explain how the observations summarised in Figure 4.1 changed scientists' model of the universe.
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 5.1 shows the groups of waves in the electromagnetic spectrum.
Figure 5.1

Gamma waves	X-rays	Ultraviolet	Visible light	Infrared	Microwaves	Radio waves

05.1 Which group of waves in the electromagnetic spectrum has the longest wavelength?
05.2 Which group of waves in the electromagnetic spectrum can be detected with the human eye?
05.3 Which group of waves in the electromagnetic spectrum causes skin to age prematurely?
05.4 Which two groups of waves in the electromagnetic spectrum can be used to cook food?
05.5 An X-ray image showing a broken bone is produced by directing a beam of X-rays at the injured part of the body.

The X-rays that pass through the body are detected electronically to form an image.
Explain why X-rays are suitable for investigating a possible broken bone.
05.6 X-rays used for medical imaging have a wavelength of $2.0 \times 10^{-10} \mathrm{~m}$

Electromagnetic waves travel at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in air.
Calculate the frequency of these X -rays.
Give a suitable unit with your answer
\qquad
\qquad
Frequency $=$
Unit:
05.7 Satellites used for TV broadcasting orbit the Earth at a height well above the Earth's atmosphere.

Communication between the Earth and the satellite uses microwaves with a wavelength of about 0.1 m

Figure 5.2 provides information about the absorption of electromagnetic radiation by the Earth's atmosphere.

Figure 5.2

Use Figure 5.2 to explain why microwaves of wavelength 0.1 m , rather than radio waves of typical wavelength 100 m , are used for satellite TV.
\qquad
\qquad
\qquad
06.1 Figure 6.1 shows how the infrared energy radiated per second from a particular surface depends on the surface temperature.

Figure 6.1

Give two conclusions based on the data shown in Figure 6.1
06.2 A student uses the apparatus in Figure 6.2 to investigate rate of emission of infrared radiation from different surfaces.

Figure 6.2

Boiling water poured into the aluminium container raises its temperature.
The infrared radiation from the container's surface is measured by the infrared sensor and displayed on the meter.

The four vertical faces of the container have a different type of surface:

- polished aluminium
- dull aluminium
- shiny black
- dull black

Write a set of instructions for the student so that the amount of infrared radiated from each of the four surfaces can be compared fairly.

Identify any variables that must be controlled.
\qquad
06.3 Table 6.1 shows data generated by the experiment in Figure 6.2

Table 6.1

Surface	Polished aluminium	Dull aluminium	Shiny black	Dull black
Energy radiated in $\mathbf{m W} / \mathbf{c m}^{2}$	3	23	30	33

Give two conclusions from the data shown in Table 6.1
\qquad
\square
\square
\qquad
06.4 The wavelength of the infrared radiation emitted from a different hot object is analysed.

Figure 6.3 is a sketch graph of the results.
Figure 6.3

Give two conclusions based on Figure 6.3

07.1 Give two scalar quantities.
[2 marks]
07.2 The distances travelled by a cyclist during the first 5.0 seconds of a road race are monitored electronically.

Figure 7.1 shows the cyclist's distance-time graph for this first 5.0 s
Figure 7.1

What can be concluded from Figure 7.1 about the cyclist's motion during the first 5.0 s of the race?

Give a reason for your answer.
07.3 Use Figure 7.1 to determine the cyclist's speed 3.0 s after the start of the race.

Show your working.

Speed $=$ m/s [2 marks]
07.4 Calculate the cyclist's average speed during the first 5.0 s of the race. Use data from Figure 7.1

Average speed $=\quad \mathrm{m} / \mathrm{s}$ [2 marks]

08.1 A van accidentally collides with a stationary car.

Explain how the idea of the conservation of momentum applies to this event.
\qquad
\qquad
\qquad
08.2 The van has a mass of 1000 kg

Before the collision, it was moving at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ Immediately after the collision, the car moves forwards with a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ The mass of the car is 800 kg

Determine the velocity of the van immediately after the collision. Include its direction.

$$
\text { Van's velocity immediately after collision }=\quad \mathrm{m} / \mathrm{s}
$$

Van's direction immediately after the collision =
09.1 Step-down transformers are used in laptop battery chargers and have many other uses. Figure 9.1 shows the basic design of a step-down transformer.

Figure 9.1

Describe the purpose of a step-down transformer.
Explain how the transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
09.2 A laptop battery charger is plugged into the mains electricity supply.

Mains electricity supplies a potential difference of 230 V
The output from the battery charger is 12 V
There are 400 turns in the primary coil of the transformer inside the battery charger.
Calculate the number of turns in the transformer's secondary coil.
Select the correct equation from the Physics Equation Sheet.
Give your answer to the nearest whole number.

Number of turns in secondary coil $=$
09.3 The current in the primary coil of the transformer in the battery charger is 0.20 A Calculate the current in the transformer's secondary coil.

Select the correct equation from the Physics Equation Sheet.
Give your answer to 2 significant figures.
\qquad

\qquad
\qquad
Secondary current =
A [3 marks]

Turn over >

Newton's Second Law states that "acceleration is directly proportional to resultant force".
A student uses the air track and glider shown in Figure 10.1 to demonstrate Newton's Second Law.

Figure 10.1

10.1 Air is pumped into the air track, lifting the glider up from the track slightly. The glider is pulled along by the weights attached to it by string.

The times registered by the light gates enable the student to determine the acceleration of the glider.

The student plans to determine the acceleration of the glider for different weights attached to the string.

Identify the independent, dependent and control variables.
Independent variable:
Dependent variable:
Control variable:
10.2 One set of the student's measurements is shown in Table 10.1

Table 10.1

Attached weight in \mathbf{N}	Length of glider passing through light gate $\mathbf{i n} \mathbf{~} \mathbf{m}$	Distance between light gates $\mathbf{i n} \mathbf{~}$	Time to pass through first light gate in \mathbf{s}	Time to pass through second light gate in \mathbf{s}
0.10	0.12	0.50	0.80	0.24

Using data from Table 10.1, calculate the glider's initial velocity, as it passes through the first light gate.

> Initial velocity =
\qquad m/s
10.3 Using data from Table 10.1, calculate the glider's final velocity, as it passes through the second light gate.
Final velocity $=\quad \mathrm{m} / \mathrm{s}$ [2 marks]

10.4 Show that the glider's acceleration is about $0.2 \mathrm{~m} / \mathrm{s}^{2}$

Select the correct equation from the Physics Equation Sheet.
Show your working.
\qquad
\qquad
\qquad
\qquad
10.5 The student takes more measurements to calculate the glider's acceleration for other values of attached weight.

Figure $\mathbf{1 0 . 2}$ shows the student's graph of the experimental results.
Figure 10.2

The student expected the results to show that the glider's acceleration is directly proportional to the attached weight.

Explain why the graph does not confirm what the student was expecting.

11 When a car driver becomes aware of a hazard ahead, the distance that the car travels before it stops is known as the stopping distance. This depends on the car's speed.
11.1 Explain what is meant in this scenario by

- the thinking distance and
- the braking distance
and how they relate to the stopping distance.
Describe the effect of three factors, other than speed, that can affect the size of each of these two distances.
\qquad
\qquad $x-1$
 $x+1$ $\square]_{-}$

 $\square \mathrm{P}$
\qquad
\qquad
\qquad
\qquad [6 marks]

Question 11 continues on the next page
11.2 Figure 11.1 shows how thinking distance and braking distance each depend on a car's speed.

Figure 11.1

Use Figure 11.1 to compare the way that thinking distance and braking distance are affected by speed.

Include at least one similarity and at least one difference.
\qquad
\qquad
\qquad
11.3 When a car's brakes are applied, the braking force does work in transferring the car's kinetic energy to thermal energy.

A typical car moving at a speed of $20 \mathrm{~m} / \mathrm{s}$ has about 200000 J of kinetic energy.
Estimate the average braking force required to stop the car in an emergency.
Select the required data from Figure 11.1
Show your working.

Average braking force $\approx \quad \mathrm{N}$ [3 marks]

Physics Equation Sheet

Equation Number	Word Equation	Symbol Equation
1	$\text { pressure due to a column of liquid }=\begin{aligned} & \text { height of column } \times \text { density of } \\ & \text { liquid } \times \text { gravitational field strength } \end{aligned}$	$p=h \rho g$
2	$\left(\right.$ final velocity) ${ }^{2}$ - (initial velocity) ${ }^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2$ as
3	$\text { force }=\frac{\text { change in momentum }}{\text { time taken }}$	$F=\frac{m \Delta v}{\Delta t}$
4	elastic potential energy $=0.5 \times$ spring constant $\times\left(\right.$ extension) ${ }^{2}$	$E_{e}=\frac{1}{2} k e^{2}$
5	$\begin{aligned} \text { change in thermal energy } & =\begin{array}{l} \text { mass } \times \text { specific heat capacity } \times \\ \text { temperature change } \end{array} \end{aligned}$	$\Delta E=m \subset \Delta \theta$
6	$\text { period }=\frac{1}{\text { frequency }}$	
7	$\text { magnification }=\frac{\text { image height }}{\text { object height }}$	
8	force on a conductor (at right-angles to a magnetic field) carrying a current$=$magnetic flux density \times current \times length	$F=B / I$
9	thermal energy for a change of state $=$ mass \times specific latent heat	$E=m L$
10	f90d956d6-54ec-4128-b639-a560e106cb5d} potential difference across primary coil potential difference across secondary coil number of turns in primary coil number of turns in seconday coil }l{feac8ce15-d433-4a02-81e1-50fff7c2f9b6	$\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}}$
11	potential difference across primary coil \times current in primary coil potential difference across $=$ secondary coil \times current in secondary coil	$V_{p} I_{p}=V_{s} I_{s}$
12	For gases: pressure \times volume $=$ constant	$p V=$ constant

