Collins

Edexcel

GCSE

Mathematics

SET A - Foundation Tier

Author: Phil Duxbury

Answers

Key to abbreviations used within the answers

M method mark (e.g. M1 means 1 mark for method)
A accuracy mark (e.g. A1 means 1 mark for accuracy)
B independent marks that do not require method to be shown (e.g. B2 means 2 independent marks)

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.

All images are © HarperCollinsPublishers and Shutterstock.com

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF

Acknowledgements

© HarperCollinsPublishers Limited 2018
ISBN 9780008302214
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data.
A CIP record of this book is available from the British
Library.

Commissioning Editor: Clare Souza
Project Leader and Management: Chantal Addy Author: Phil Duxbury
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

Question	Answer	Mark
1	$\begin{aligned} & 9 \times 8 \\ & =72 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
2	2, 3, 5, 7, 11	B2
3	$\frac{1}{9}, \frac{1}{6}, \frac{1}{3}, \frac{4}{9}$	B2
4	$\begin{aligned} & \frac{32}{100} \\ & =\frac{8}{25} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
5	Use of valid short division method $=0.875$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
6	 Shape rotated by 90° clockwise In correct place	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
7	$\begin{aligned} & \frac{5}{3} \times \frac{9}{2} \\ & =\frac{45}{6}\left(=\frac{15}{2}\right) \text { or } 7 \frac{1}{2} \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \mathrm{~A} 1 \\ \mathrm{~A} 1 \end{gathered}$
8	$\begin{aligned} & r=6 \\ & \frac{\pi r^{2}}{2} \\ & =\frac{\pi \times 6^{2}}{2} \\ & =18 \pi \mathrm{~cm}^{2} \end{aligned}$	B1 M1 A1
9	$75 \div 6=12.5$ So, Gavin needs 13 packs of buns	$\begin{array}{\|c\|} \hline \text { M1 A1 } \\ \text { A1 } \end{array}$
10	$\begin{aligned} & \frac{12}{100} \times 75 \text { or } 0.12 \times 75 \\ & =\frac{3}{25} \times 75 \\ & =9 \end{aligned}$	M1 A1 A1
11	$\begin{aligned} & 15=3 \times 5 \\ & 20=2 \times 2 \times 5 \\ & \mathrm{LCM} \text { is } 2 \times 2 \times 3 \times 5=60 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 A1 } \end{gathered}$

Question	Answer	Mark
12	$\begin{aligned} & 3(x-1)=6(10-x) \\ & 3 x-3=60-6 x \\ & 9 x=63 \\ & x=7 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \text { A1 } \\ \text { A1 } \end{gathered}$
13 (a)		B1
	$\frac{1}{2} \times(6+2) \times 2 \times 2=16 \mathrm{~cm}^{3}$	M1 A1
14	$\begin{aligned} & 1-\left(\frac{2}{5}+\frac{3}{10}\right) \\ & 1-\left(\frac{4}{10}+\frac{3}{10}\right) \\ & =1-\frac{7}{10} \\ & =\frac{3}{10} \end{aligned}$	M1 A1 A1
15	$\begin{aligned} & a=65^{\circ} \\ & b=135^{\circ} \\ & c=45^{\circ} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
16 (a)	Favourite sports Correct angles: $96^{\circ}, 72^{\circ}, 36^{\circ}, 96^{\circ}, 60^{\circ}$ Pie-chart drawn Key	$\begin{array}{\|c} \mathrm{M} 1 \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \end{array}$
(b)	$\begin{aligned} & \frac{12+6}{60} \\ & =\frac{18}{60}\left(=\frac{3}{10}\right) \end{aligned}$	M1 A1
17	$\begin{aligned} & 2 \times 2 \times 2 \\ & =8 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
18	Valid method of long multiplication $=15.198$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
19	$\begin{aligned} & \text { Use of } \sin 30^{\circ}=\frac{1}{2} \\ & \sin 30^{\circ}=\frac{x}{40} \\ & x=40 \sin 30^{\circ} \\ & =20 \mathrm{~cm} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 A1 } \\ \text { A1 } \end{gathered}$

Question	Answer	Mark	Paper 2		
20	$\begin{aligned} & \text { time }=\frac{\text { distance }}{\text { speed }} \\ & =\frac{200}{80} \\ & =2 \frac{1}{2} \\ & =2 \text { hours } 30 \text { minutes } \end{aligned}$	M1	Question	Answer	Mark
			1	Seven thousandths	B1
			2	125	B1
		A1	3	10.57	B1
		A1	4 (a)	Ordering numbers: $3,5,10,12,50$ Median is 10	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
21	$\begin{aligned} & \text { A: } 1 \\ & \text { B: } 3 \\ & \text { C: } 2 \\ & \text { D: } 4 \end{aligned}$	B1	(b)	9	B1
		B1 B1	5	$\begin{aligned} & -2 x=8 \\ & x=-4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
22	$\begin{aligned} & \frac{2}{7} \text { of time spent on homework } \\ & \frac{2}{7} \times \frac{2}{3} \times 7 \\ & =\frac{4}{21} \times 7 \\ & =\frac{4}{3} \\ & =1 \text { hour } 20 \text { minutes } \end{aligned}$	B1	6	$\begin{aligned} & 64=2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ & 80=2 \times 2 \times 2 \times 2 \times 5 \end{aligned}$ HCF is $2 \times 2 \times 2 \times 2=16$	M1 A1
		M1	7	$65 p+300 q$	B1 B1
		A1 A1	8	$\begin{aligned} & a(20-r)=5 \\ & 20 a-a r=5 \text { or } 20-r=\frac{5}{a} \\ & 20 a-5=a r \\ & \quad 20 a-5 \end{aligned}$	M1 A1 A1
23	$\begin{aligned} & 95 \% \text { of } x=76 \\ & \frac{19 x}{20}=76 \\ & x=\frac{76 \times 20}{19} \\ & =4 \times 20 \\ & =£ 80 \end{aligned}$	$\begin{gathered} \text { M1 A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$		$r=\frac{20 a}{a}$ or $r=20-\frac{5}{a}$	A1
			$9 \text { (a) }$ (b)	$510 \leqslant x<520 \mathrm{~cm}$	B1
				$\begin{aligned} & \sum \frac{f x}{f}=\frac{(505 \times 2+515 \times 6+525}{\times 1+535 \times 4+545 \times 3)} \\ & 16 \\ &=\frac{8400}{16}=525 \mathrm{~cm} \end{aligned}$	M1 A1
24	$\begin{aligned} & \frac{10}{3} \div \frac{2}{9} \\ & =16 \times \underline{9} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 A1 } \\ \\ \text { A1 } \end{gathered}$	10	$2+$ any other prime e.g. $2+3=5$, so odd	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & =\frac{5}{3} \times \frac{1}{2} \\ & =\frac{72}{3} \\ & =24 \end{aligned}$		11	Attempt to use Pythagoras $\begin{aligned} & x^{2}+12^{2}=29^{2} \\ & x=\sqrt{29^{2}-12^{2}} \\ & x=26.40 \mathrm{~cm} \end{aligned}$	M1 A1 A1
25 (a) (b) (c)	3.3×10^{4}	B1	12	$\begin{aligned} & 2\binom{3}{-2}-3\binom{-2}{-1}=\binom{6}{-4}+\binom{6}{3} \\ & =\binom{12}{-1} \end{aligned}$	
	8.2×10^{-3}	B1			M1
	2×10^{-7}	B1			
26	$\begin{aligned} & (2 x-1)^{2}=(2 x-1)(2 x-1) \\ & =4 x^{2}-2 x-2 x+1 \\ & =4 x^{2}-4 x+1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$			A1

	Question	Answer	Mark
	$13 \text { (a) }$	10.5 pictograms One pictogram represents $\frac{210}{10.5}=20$ families	$\begin{array}{\|c\|} \hline \text { B1 } \\ \text { M1 A1 } \end{array}$
	(b)	$3.5 \times 20=70$ families	A1
	14	$\begin{aligned} & 36 \div 3=12 \\ & =12 \times 7 \\ & =£ 84 \end{aligned}$	M1 A1
15 (a) (b) (c)		13	B1
		16	B1
		$3 n+1$	M1 A1
16		$\begin{aligned} & \frac{2 x+7}{4}<5 \\ & 2 x+7<20 \\ & 2 x<13 \end{aligned}$ Solution is $x<\frac{13}{2}$ or $x<6.5$	M1 A1 B1
	17	Any suitable method, e.g.: First box: 1 g costs 0.53 p Second box: 1 g costs 0.52 p Third box: 1 g costs 0.51 p So, the third box is best value for money	M1 A1 A1
	18	$\begin{aligned} & 1000 \times 1.02 \times 1.0125^{4} \\ & =£ 1072 \end{aligned}$	$\begin{array}{\|c} \text { M1 A1 } \\ \text { A1 } \end{array}$
	19	Any two valid reasons, e.g.: The sample size may be too small to extrapolate The sample chosen may have been biased (age/gender), or otherwise not representative of the school	B1 B1
	20	$\begin{aligned} & 37 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	21	Bisect angle $A B C$ with construction lines Bisect angle just constructed (with construction lines)	B1 B1
	22 (a)	$x=130^{\circ}$ Since vertically opposite angles are equal	B1 B1

Question	Answer	Mark
(b)	Interior angles in a pentagon add to 540° $\begin{aligned} & 540^{\circ}-130^{\circ}=410^{\circ} \\ & y=\frac{410^{\circ}}{4}=102.5^{\circ} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { B1 } \\ \\ \text { M1 A1 } \end{array}$
(c)	$z=50^{\circ}$ Since 130° and z are supplementary (or angles on straight line sum to 180°)	B1 B1
23	$(x-7)(x+4)$	M1 A1
24 (a)	$\begin{aligned} & m=\frac{2}{4}=\frac{1}{2} \\ & c=-2 \\ & y=\frac{1}{2} x-2 \end{aligned}$	B1 B1 B1
	Gradient of new line is $\frac{1}{2}$ Equation is $y=\frac{1}{2} x+c$ So $y=\frac{1}{2} x+1$	B1 M1 A1
25	$\begin{aligned} & 16: 25=1: n \\ & 16 n=25 \\ & n=1.5625 \end{aligned}$	M1 A1 A1
$26 \text { (a) }$	Circumference $=2 \pi r=2 \times \pi \times 7.5=47.12 \mathrm{~cm}$ So length of paper is ' $47.12^{\prime}+2=$ 49.12 cm Area $=49.12 \times 11=540 \mathrm{~cm}^{2}$	M1 A1 M1 A1
(b)	$\begin{aligned} & \text { Volume }=\pi r^{2} h=\pi \times 7.5^{2} \times 11 \\ & =1940 \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
27	$\begin{aligned} & y-2=4 x-y \\ & 2 x+1=14-y \end{aligned}$ Valid attempt to solve simultaneously $\begin{aligned} & x=3 \\ & y=7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$

Paper 3

FOR USE OF DIGITAL COPYRIGHT HOLDER ONLY

Question	Answer	Mark
1	32000	B1
2	Square number is 49 Prime number is 47	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
3	$\begin{aligned} & 84.65 \mathrm{~km}=84.65 \times 1000=8465000 \mathrm{~cm} \\ & \frac{8465000}{625000}=13.5 \mathrm{~cm} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { M1 A1 } \end{array}$
$4 \text { (a) }$	$\begin{aligned} & \frac{18+12}{18+14+8+15+12+6+8+8+4} \times 100 \\ & =\frac{30}{93} \times 100 \\ & =32.3 \% \end{aligned}$	M1 A1
(b)	Mathematics	B1
$5 \text { (a) }$	$\frac{300}{17}=17.6 \ldots$ So he needs to attend 18 matches	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} & 21 \times 17-300 \\ & =£ 57 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
$6 \text { (a) }$	Positive correlation (or no. of ice creams increases as temperature increases)	B1
(b)	Line of best fit Approximately 15-20 ice creams	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(c)	One good reason e.g.: relationship may not be linear / if temp. is low enough, predicted no. of ice-creams sold becomes negative	B1
7 (a) (b)	$x=180^{\circ}-40^{\circ}-56^{\circ}=84^{\circ}$	M1 A1
	No, they are not congruent since side $A C$ does not correspond to side $Q R$ (ASA rule)	B1 B1
$8 \text { (a) }$ (b)	48	B1
	$\frac{x-3}{2}=2 x$ Solve to give $x=-1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
9	-7, -6, -5, -4, -3, -2, -1, 0, 1, 2	B1

Question	Answer	Mark
10	 Shape translated Correct position	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
11 (a) (b)	$9 x-2 y$	B1
	$9 x^{2}$	B1
12	$\begin{aligned} & 15 \times \frac{60^{2}}{1000} \\ & =54 \mathrm{~km} / \mathrm{hr} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
13	$\begin{aligned} & \tan 35^{\circ}=\frac{12}{x} \\ & x=\frac{12}{\tan 35^{\circ}}=17.1 \mathrm{~cm} \end{aligned}$	M1 A1
$14 \text { (a) }$	Equation - only valid for certain values of x	B1
(b)	Equation - only valid for certain values of x	B1
(c)	Identity - true for all values of x	B1
15	$\begin{aligned} & \text { Use } A=\frac{\theta}{360} \times \pi r^{2} \\ & \theta=\frac{250 \times 360}{\pi \times 15^{2}} \\ & =127^{\circ} \end{aligned}$	M1 A1
16	$\begin{aligned} & 19.3 \mathrm{~g} / \mathrm{cm}^{3}=(19.3 / 1000) / \\ & (1 / 1000000)=19300 \mathrm{~kg} / \mathrm{m}^{3} \\ & \text { Mass }=\text { density } \times \text { volume } \\ & \quad=0.1 \times 19300=1930 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 A1 } \end{gathered}$
17	Use of right angled triangle, base $=5 \mathrm{~cm}$ $\begin{aligned} & \cos x=\frac{5}{7} \\ & x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4 \end{aligned}$	M1 M1 A1

Question	Answer	Mark
$\mathbf{1 8}$	Valid attempt to expand brackets (at least one bracket expanded correctly) $10 x-20-2 x+20$ $=8 x$	

Question	Answer	Mark
26	Equation of L is $y=\frac{4}{5} x+2$ Attempt to solve $0=\frac{4}{5} x+2$ to give coordinate $\left(-\frac{5}{2}, 0\right)$	B1 M1 A1
27	Perimeter of shape 1 is $\frac{3}{4} \times 2 \pi r+10$ $=\frac{15 \pi}{2}+10$ Perimeter of shape 2 is $2 \pi r$ $\Rightarrow 2 \pi r=\frac{15 \pi}{2}+10$ Setting terms equal and attempting to solve $\Rightarrow r=\frac{\frac{15 \pi}{2}+10}{2 \pi}=5.34 \mathrm{~cm}$	M1 A1 M1 M1 A1

