Collins

AQA

GCSE

PHYSICS

SET B - Paper 1 Foundation Tier

Author: Lynn Pharaoh

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a calculator.
- the Physics Equation Sheet (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 06 and 12.2 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Name:
01.1 Which type of nuclear radiation has the greatest ionising power?

Tick one box.

Alpha

Beta

Gamma

01.2 Which type of nuclear radiation has the longest range in air?

Tick one box.

Alpha

Beta

Gamma

01.3 Which type of nuclear radiation consists of high speed electrons?

Tick one box.

01.4 Which type of nuclear radiation does not consist of charged particles?

Tick one box.

01.5 Which type of nuclear radiation is not suitable for medical exploration of internal organs? Tick one box.

Alpha

Beta

Gamma

01.6 Which type of nuclear radiation consists of two protons and two neutrons?

Tick one box.

02 A student wants to investigate how the thickness of bubble wrap affects its thermal insulation properties.

Figure 2.1 shows the apparatus that the student uses.
Figure 2.1

02.1 The student uses a volume of $100 \mathrm{~cm}^{3}$ of hot water in the beaker. He measures the time taken for the temperature of the hot water in the beaker to fall by $20^{\circ} \mathrm{C}$, from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ He records time measurements for $1,2,3$, and 4 layers of bubble wrap. Identify two control variables in this investigation.
1.
2.
02.2 Table 2.1 shows the student's measurements.

Table 2.1

Number of layers of bubble wrap	Time in seconds for temperature drop
1	220
2	340
3	440
4	560

Use the data in Table 2.1 to help you to complete the sentences below.
Choose from the words in the box.
increases decreases
Increasing the number of layers of bubble wrap around the beaker the time taken for the temperature to drop from
$80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Increasing the number of layers of bubble wrap around the beaker the thermal energy transferred to the surroundings
each second.
02.3 Figure 2.2 shows the student's data displayed in a bar chart.

Figure 2.2

The bar chart is incomplete.
Add the missing data.
02.4 Table 2.2 shows the thermal conductivity of three insulating materials.

Table 2.2

Material	Thermal conductivity in W/(m K)
Expanded polystyrene	0.03
Glass wool	0.04
Rock wool	0.045

Which material listed in Table 2.2 is the best thermal insulator?
03.1 Write down what is meant by a renewable energy source.
03.2 Give an example of a renewable energy source that is used to generate electricity.
03.3 In the UK, a system of cables and transformers links power stations to consumers. What is the name of this system?
03.4 In UK homes, cables that connect a mains socket to an appliance contain three wires with different colour schemes.

Draw a line from each wire to its colour scheme.
colour scheme

blue
Green and yellow stripes
brown

03.5 Which wire prevents the appliance from becoming live if there is a fault?

Tick one box.

Live

Neutral

Earth

03.6 The potential difference supplied by the mains in the UK is 230 V When a toaster is plugged into the mains it draws an electric current of 3.0 A Use the following equation to calculate the power of the toaster:

$$
\text { power }=\text { potential difference } \times \text { current }
$$

Give the correct unit with your answer.
Power =

Unit:
04.1 What is the approximate radius of an atom?

Tick one box.
$1 \times 10^{-2} \mathrm{~m}$

$1 \times 10^{-5} \mathrm{~m}$
04.2 Experiments during the late $19^{\text {th }}$ century and the early $20^{\text {th }}$ century enabled scientists to develop the model of the atom.

They replaced the plum pudding model with the nuclear model.
Describe the main features of the plum pudding model of the atom.
\qquad
\square
04.3 Describe the main features of the nuclear model of the atom.
\qquad
\qquad
[2 marks]
04.4 Further experiments showed that the atomic nucleus consists of two types of particle.

Name the two types of particle found in the nucleus.
1.
2.

05 A system is an object or a group of objects.
The way energy is stored in a system can change when the system changes.
05.1 Draw a line from each system change to the correct energy store change.

System change	Energy store change A cup of tea cooling down A falling football potential energy to kinetic energy
A car braking	Elastic potential energy to thermal energy
	Thermal energy dissipated to the surroundings
	Kinetic energy to thermal energy
Thermal energy to	
kinetic energy	

05.2 A student attaches a weight to a spring, causing the spring to stretch. Name the energy store associated with the stretched spring.
05.3 The weight extends the spring by 0.12 m

The spring constant of the spring is $25 \mathrm{~N} / \mathrm{m}$
Calculate the amount of energy stored in the spring.
Use the following equation.

$$
\text { energy stored }=\frac{1}{2} \times \text { spring constant } \times(\text { extension })^{2}
$$

06.1 A student uses the set-up in Figure 6.1 to demonstrate the following to her class:

Two objects that carry the same type of charge repel
Two objects that carry different types of charge attract
The materials she has are:

- a piece of cloth
- two acetate rods
- two polythene rods

The apparatus that she has allows a rod to be suspended so that it can rotate freely.
Figure 6.1

The student knows that:

- polythene can gain a negative charge, and
- acetate can gain a positive charge.

Describe the demonstration that she should carry out.
\qquad
07.1 Figure 7.1 shows the main sources of background radiation at a specific location.

Figure 7.1

Typical contribution of different sources to background radiation
What are the two largest sources of background radiation at this location?
1.
2.
07.2 Table 7.1 contains information about radon gas doses.

Table 7.1

Location	Dose in mSv
Annual average radon dose across the UK	1.3
Annual average radon dose in Cornwall	6.9

Calculate how many times greater the radon dose is in Cornwall compared with the average dose across the UK.

Number of times greater $=$
07.3 A nucleus of an isotope of radon, ${ }_{86}^{222} \mathrm{Rn}$, undergoes radioactive decay by alpha emission to form a nucleus of polonium, Po.

Complete the nuclear equation showing the decay of radon-222
Add the two missing numbers to the equation.

$$
{ }_{86}^{222} \mathrm{Rn} \rightarrow{ }^{218} \mathrm{Po}+{ }_{2} \mathrm{He}
$$

07.4 The polonium-218 nucleus undergoes radioactive decay by beta emission.

Complete the nuclear equation showing the decay of polonium-218
Add the three missing numbers to the equation.

$$
{ }_{84}^{218} \mathrm{Po} \rightarrow \quad \mathrm{At}+{ }^{0} \mathrm{e}
$$

08.1 Figure 8.1 shows a uranium nucleus undergoing fission.

Figure 8.1

Describe what must happen for a chain reaction to start in a sample of uranium.
\qquad
\qquad
08.2 What type of energy store do the products of the fission event have?

Tick one box.

Chemical

Kinetic
Sound \square
08.3 Give an example of where an uncontrolled fission chain reaction occurs.
08.4 When a uranium nucleus undergoes fission it splits into smaller nuclei called fission fragments (Figure 8.1).

The fission fragments are unstable and undergo radioactive decay.
The fission fragments produced in a nuclear reactor form radioactive waste.
Table 8.1 lists some fission fragments and their half-life values.
Table 8.1

Fission fragment	Half-life
Barium-140	12 days
Caesium-137	30 years
Iodine-131	8 days
Krypton-85	11 years
Xenon-140	14 s

Which two fission fragments will need to be stored safely for hundreds of years?
1.
2.
08.5 Explain your answer to question 08.4
\qquad
\qquad
08.6 Figure 8.2 shows a proton colliding with a deuteron and creating a nucleus of an isotope of helium.

Figure 8.2

before

after

What is the name of the process shown in Figure 8.2?

09 The specific heat capacity of a material can be measured by heating the material with an electrical heater.
09.1 Explain what is meant by specific heat capacity.
09.2 Figure 9.1 shows apparatus used to determine the specific heat capacity of an aluminium block.

The joulemeter shows the amount of electrical energy supplied to the block over a specific amount of time.

Figure 9.1

The temperature of the block needs to be recorded before and after it is heated.
The temperature of the block is expected to rise by approximately $20^{\circ} \mathrm{C}$
The room temperature of the laboratory is about $18^{\circ} \mathrm{C}$
Table 9.1 lists some thermometers that are available.

Table 9.1

Thermometer	Range in ${ }^{\circ} \mathbf{C}$	Value of one division in ${ }^{\circ} \mathbf{C}$
A	-10 to 110	1
B	34 to 44	0.1
C	-10 to 50	0.5
D	-10 to 200	2

Choose the most suitable thermometer for the experiment.
Explain your answer.
Thermometer:
\qquad
\square
\qquad
\qquad
09.3 Measurements taken using the apparatus in Figure 9.1 are shown in Table 9.2

Table 9.2

Measurement	Value
Initial temperature of the block	$18.5^{\circ} \mathrm{C}$
Final temperature of the block	$41.5^{\circ} \mathrm{C}$
Energy supplied	21260 J
Mass of block	1.00 kg

Determine the specific heat capacity of aluminium.
Use the correct equation from the Physics Equation Sheet.
Give your answer to 3 significant figures.
10.1 Name component \mathbf{Q} in Figure 10.1

Figure 10.1

10.2 Figure $\mathbf{1 0 . 2}$ shows how the resistance of component \mathbf{Q} changes as its temperature is changed.

Figure 10.2

Describe the trend shown by Figure 10.2
\qquad
\square
10.3 Explain how the reading on the ammeter in Figure 10.1 would change if the temperature of component \mathbf{Q} increased.
\qquad
\qquad
10.4 Use Figure $\mathbf{1 0 . 2}$ to determine the resistance of component \mathbf{Q} at temperature of $20^{\circ} \mathrm{C}$
Resistance =
$\Omega \quad$ [1 mark]
10.5 Component \mathbf{P} in the circuit of Figure 10.1 is a fixed resistor of resistance of 800Ω

Calculate the total resistance in the circuit when component \mathbf{Q} is at $20^{\circ} \mathrm{C}$
\qquad

```
Total resistance =
\(\Omega \quad\) [1 mark]
```

10.6 Write down the equation that links potential difference, current and resistance.
10.7 The battery in Figure 10.1 supplies a potential difference of 6.0 V

Calculate the current through the ammeter when component \mathbf{Q} is at $20^{\circ} \mathrm{C}$
\qquad
10.8 Write down the equation that links power, current and resistance.
10.9 Calculate the power transferred by resistor \mathbf{P}.

Give your answer in milliwatts.

11 A student sets up a circuit to measure current and potential difference values for an unknown electrical component.

Figure 11.1 shows the component marked with an ' X '.
Figure 11.1

11.1 A circuit is needed that allows several different measurements to be taken of current through \mathbf{X} and potential difference across \mathbf{X}.

Complete the circuit diagram in Figure 11.1 to show a suitable circuit.
11.2 Write down the equation that links charge, current and time.
11.3 The student sets up the circuit so that the current is 0.12 A Calculate the charge that flows through component \mathbf{X} in 10 s

```
Charge =
11.4 Write down the equation that links energy transferred with charge flow and potential difference.
11.5 When the current is 0.12 A , the student measures the potential difference across \(\mathbf{X}\) to be 0.60 V

Calculate the energy transferred by component \(\mathbf{X}\) in 10 s

Energy transferred =
J [2 marks]
11.6 Figure 11.2 is a graph of the student's current and potential difference measurements for component \(\mathbf{X}\).

Figure 11.2


Explain how the resistance of the component varies as the potential difference is increased.
\(\qquad\)
\(\qquad\)
\(\qquad\)
12.1 Table 12.1 shows the density of liquid water and water vapour.

Table 12.1
\begin{tabular}{|c|c|}
\hline State of water & Density in \(\mathbf{g / c m}{ }^{\mathbf{3}}\) \\
\hline Liquid & 0.998 \\
\hline Vapour (steam) & 0.590 \\
\hline
\end{tabular}

Explain what can be concluded from Table 12.1 about the arrangement of molecules in liquid water compared with water vapour.
\(\qquad\)
\(+x=x+x=0\)
\(\qquad\)
\(\qquad\)
12.2 A student is asked to measure the density of cooking oil.

Describe a plan for the student to follow.
Name any apparatus to be used.
\(\qquad\)

\section*{END OF QUESTIONS}

\section*{BLANK PAGE}

\section*{Physics Equation Sheet}
\begin{tabular}{|c|l|c|}
\hline \begin{tabular}{c} 
Equation \\
Number
\end{tabular} & \multicolumn{1}{|c|}{ Word Equation } & Symbol Equation \\
\hline 1 & (final velocity) \(^{2}-\left(\right.\) initial velocity) \({ }^{2}=2 \times\) acceleration \(\times\) distance & \(v^{2}-u^{2}=2\) a s \\
\hline 2 & elastic potential energy \(=0.5 \times\) spring constant \(\times\left(\right.\) extension) \({ }^{2}\) & \(E_{e}=\frac{1}{2} \mathrm{ke}^{2}\) \\
\hline 3 & \begin{tabular}{l} 
change in thermal energy \(=\) mass \(\times\) specific heat capacity \(\times\) \\
temperature change
\end{tabular} & \(\Delta E=m \mathrm{c} \Delta \theta\) \\
\hline 4 & period \(=\frac{1}{\text { frequency }}\) & \(E=m L\) \\
\hline 5 & magnification \(=\frac{\text { image height }}{\text { object height }}\) & \\
\hline 6 & \begin{tabular}{l} 
thermal energy for a change of state \(=\) mass \\
\(\times\) specific latent heat
\end{tabular} & \(V_{p} I_{p}=V_{s} I_{s}\) \\
\hline 7 & \begin{tabular}{l} 
potential difference across primary coil \(\times\) current in primary \\
coil \(=\) potential difference across secondary coil \(\times\) current in \\
secondary coil
\end{tabular} & \(p V=\) constant \\
\hline 8 & \begin{tabular}{l} 
For gases: pressure \(\times\) volume \(=\) constant
\end{tabular} \\
\hline
\end{tabular}```

