Collins

AQA

 GCSE
Chemistry

SET B - Paper 1 Foundation Tier

Author: Paul Lewis

Materials

For this paper you must have:

- a ruler
- a calculator
- the Periodic Table (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 07.6 and 10.4 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Name:

This question is about atomic structure and the Periodic Table.
01.1 Figure 1.1 shows the location of some of the elements in the Periodic Table.

The letters are not the actual symbols for the elements in that location.
Figure 1.1

Write letters from Figure 1.1 to identify the following.
Two elements in the same period An element with a full outer shell A transition metal

An element with only six protons

01.2 Identify the correct electron configuration for nitrogen.

Tick one box.

01.3 How many protons are there in a nitrogen atom?

Tick one box.
5
7
9
14

01.4 Explain why a nitrogen atom has no overall charge.
\qquad
\qquad
\qquad
01.5 Draw one line from each word to its definition.

Word

02 All metals in Group 1 react in a similar way.
For example, when potassium reacts with water, the reaction can be represented by:

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

02.1 Name the gas produced.
02.2 Some students place 1 g of a Group 1 metal into a trough of water.

At the end of the reaction, one of the students adds a few drops of universal indicator to the trough.

The solution turns a light purple, meaning it has become alkaline.
Which ion makes the solution alkaline?
[1 mark]
02.3 The reactions of potassium with water and sodium with water are similar, but not identical.

State two differences between the reaction of potassium and water compared to the reaction of sodium and water.
1.
2.
02.4 Explain why the elements in Group 1 get more reactive further down the group when moving from lithium to francium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
02.5 Silver and gold are transition metals.

Where are silver and gold found on the Periodic Table?
\qquad
02.6 Transition metals have different properties to Group 1 metals.

Which two statements about the properties of transition metals are correct?
Tick two boxes.
They are less reactive than Group 1 metals.
They have lower densities than Group 1 metals.
They have higher melting points than Group 1 metals.
They do not tend to form coloured compounds, unlike Group 1 metals.
[2 marks]

Some students were investigating the reactivity of four different metals.
They used $1 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid and 3 cm lengths of each metal.

When the metals react, they release hydrogen gas as gas bubbles in the test tube.
03.1 Draw one line from each description to the correct variable.

Description
independent variable

```
    dependent variable
```

```
    dependent variable
```

control variable

Variable

 type of metal
 type of metal
 concentration of acid used
 concentration of acid used
 [2 marks]
03.2 The students then investigated the volume of hydrogen gas produced.

Figure 3.1 shows the apparatus used.
Figure 3.1

This is their method:

1. Place a 3 cm length of metal ribbon in the flask.
2. Add $15 \mathrm{~cm}^{3} 1 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid.
3. Connect the piece of apparatus labelled X immediately.
4. Measure the volume of gas produced every 10 s , for a total of 60 s

What is the name of the piece of apparatus, labelled X, used to collect the hydrogen?
03.3 Their results are shown in Table 3.1

Table 3.1

Time (seconds)	Volume of hydrogen gas $\left(\mathrm{cm}^{\mathbf{3}}\right)$
0	0
10	8
20	16
30	15
40	21
50	23
60	23

Plot these results on the grid below.
Draw a line of best fit.

03.4 The results for magnesium have produced an anomalous result. Identify which result is anomalous.

Explain why this result can be treated as an anomalous result.
\qquad
\qquad
\qquad
03.5 Describe the pattern in the results.
\qquad
\qquad
\qquad
03.6 The results in Table 3.1 above show that in 50 seconds the reaction produced $23 \mathrm{~cm}^{3}$ of hydrogen gas.

Calculate the mean volume of hydrogen produced per second in the reaction.
Give your answer to 1 decimal place.
\qquad

Mean volume of hydrogen produced throughout the reaction $=$
$\mathrm{cm}^{3} / \mathrm{s}$
[2 marks]

Scientists use models as a way to show and describe what they mean.
04.1 Models can be used to show bonding in different structures.

Which type of structure is shown in the model of water in Figure 4.1?
Figure 4.1
$\mathrm{H}-\mathrm{O}-\mathrm{H}$

Tick one box.
Covalent

Metallic

Ionic

04.2 Models can also be used to distinguish between different substances.

Draw one line from each statement to the model that shows it best.

04.3 Figure 4.2 show models that different scientists have used at different times in history, to describe how the atom is structured.

Figure 4.2

Compare the older plum pudding model with the modern nuclear model of the atom. Use your own knowledge and the diagrams in Figure 4.2
\qquad

05 Students use the apparatus shown in Figure 5.1 to investigate how the temperature changes as different solids dissolve.

Figure 5.1

This is their method:

1. Place $25 \mathrm{~cm}^{3}$ deionised water in a polystyrene cup.
2. Measure the temperature of the water.
3. Add 1 g calcium chloride, and stir.
4. Record the highest or lowest temperature reached.
5. Repeat the experiment using potassium chloride instead of calcium chloride.
05.1 Table 5.1 shows the results.

Table 5.1

Solute	Initial temperature in ${ }^{\circ} \mathrm{C}$	Final temperature in ${ }^{\circ} \mathbf{C}$
calcium chloride	20	29
potassium chloride	20	14

Calculate the temperature change for each solute.
calcium chloride:
${ }^{\circ} \mathrm{C}$
potassium chloride:
${ }^{\circ} \mathrm{C}$
05.2 On the sketch graph below, draw the reaction profile for dissolving calcium chloride. Label the reactants and the products on the profile.

You do not have to show activation energy.

05.3 Which of the two solutes could be used in first aid ice packs?
05.4 What is the word used for a reaction that transfers energy from the reactants to the surroundings?
05.5 Calcium chloride has the chemical formula CaCl_{2}

Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of calcium chloride.
Relative atomic masses $A_{r}: \mathrm{Cl}=35.5 ; \mathrm{Ca}=40$
\qquad
06.1 Choose words from the box to complete the paragraph about metals and alloys.

Use Figure 6.1 to help you.

hard harder	smooth distorted	soft softer	ordered better

Figure 6.1

Pure metal

Alloy

Pure metals and alloys have different properties.
A pure metal is \qquad because the atoms are all arranged in layers which slide over each other.

In an alloy, the layers are
This makes alloys than pure metals.
06.2 Magnesium atoms have 12 electrons each.

Draw on Figure 6.2 to show how the electrons are arranged in a magnesium atom.
Figure 6.2

06.3 Magnesium is in Group 2 and Period 3 of the Periodic Table.

Explain why magnesium is in this location, in terms of electrons and electron shells.
\qquad
\qquad
\qquad
06.4 Metals have unique properties due to their chemical structure.

Draw one line from each property of a metal to the feature of the structure of metals.

Property

good conductors of electricity

often have a high melting point
malleable

Feature
have layers which can slide over each other
no delocalised electrons
to carry a charge
strong covalent bonds
strong electrostatic
forces of attraction
delocalised electrons to carry a charge
06.5 Silver particles are used in plasters.

The particles have a diameter of 20 nm .
Explain, in terms of their size, why they are classed as nanoparticles.
06.6 A picometre is $1 \times 10^{-12} \mathrm{~m}$

A silver atom has a radius of 165 picometres.
What is the radius of a silver atom in nanometres?
Give your answer in Standard Form.
\qquad
\qquad
\qquad

07 A burette is filled to the zero line with sodium hydroxide solution.
Some of the solution is let out of the burette.
Figure 7.1 shows the level of the remaining solution.
Figure 7.1

07.1 What is the volume of sodium hydroxide solution that was let out of the burette?

Tick one box.
$10.25 \mathrm{~cm}^{3}$

$10.50 \mathrm{~cm}^{3}$
$11.50 \mathrm{~cm}^{3}$
$11.25 \mathrm{~cm}^{3}$

07.2 The concentration of the sodium hydroxide solution is $45 \mathrm{~g} / \mathrm{dm}^{3}$

Calculate how many grams of sodium hydroxide there are in the sodium hydroxide solution let out of the burette.

Show your working.
\qquad
\qquad
07.3 The label on the burette states $\pm 0.25 \mathrm{~cm}^{3}$

A student uses the burette to measure $50 \mathrm{~cm}^{3}$ liquid.
What is the largest real volume that they could have measured?
[1 mark]
07.4 When sodium hydroxide reacts with an acid it produces sodium sulfate.

What is the name of the acid used in the reaction?
07.5 What is the name of this type of reaction?

07.6 A student will use the equipment shown in Figure 7.2 to carry out a titration.

Figure 7.2

The student plans to carry out a titration to find the volume of sodium hydroxide required to react with a known volume of acid.

Describe the method they should use.
Your answer should include reference to each piece of equipment.
You do not need to include any calculations in your answer.
\qquad

08 Figure 8.1 shows the structure of graphene.
Figure 8.1

Graphene is a single layer made of the same atoms that make up graphite.
It is said that graphene:

- is the strongest material ever measured
- is one of the best conducting materials known
- may have the highest melting point in nature.
08.1 Complete the sentences about graphene.

Use the correct words from the boxes.

calcium	chlorine	carbon
three	four	five

Graphene is made from atoms.

In graphene, each atom bonds to other atoms.
08.2 Graphite, like graphene, can conduct electricity.

Explain why graphite can conduct electricity.
\qquad
\qquad
08.3 Explain why graphite is used in lubricants.
\qquad
\qquad
\qquad

Electrolysis can be used to separate some substances into their components.
09.1 Which two of the following substances could be separated into their components using electrolysis?

Tick two boxes.
Solid carbon dioxide

Molten magnesium chloride

A solution of potassium iodide

Molten sulfur dioxide

Solid potassium iodide

09.2 The electrolysis of sodium chloride solution (brine) can be carried out in a school laboratory or on a larger scale in industry as shown in Figure 9.1

Figure 9.1

Complete Table 9.1 to identify the name of the product left in the solution.
Table 9.1

Location	Product
positive electrode	chlorine
negative electrode	hydrogen
product left in solution	

09.3 Explain why hydrogen ions move to the negative electrode.
\qquad
\qquad
09.4 Explain why hydrogen forms at the negative electrode, but sodium does not.
09.5 Describe how a chloride ion turns into a chlorine atom.
\qquad
09.6 Sodium chloride forms from the reaction between sodium and chlorine.

Balance the equation for this reaction, below.

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NaCl}(\mathrm{~s})
$$

09.7 Chlorine is in Group 7.

What is the name given to the elements in Group 7?
Tick one box.
Halogens \square
Alkali metals \square

Noble gases \square
09.8 Table 9.2 provides information about the Group 7 elements.

Table 9.2

Element	Colour in aqueous solution	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
fluorine	colourless	-185
chlorine	green / yellow	
bromine	orange	59
iodine		184

Predict the colour of iodine in aqueous solution.
09.9 Predict the boiling point of chlorine.
09.10 When aqueous fluorine is added to lithium bromide solution, a displacement reaction occurs.

The equation for this reaction is:

$$
2 \mathrm{LiBr}(\mathrm{aq})+\mathrm{F}_{2}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{LiF}(\mathrm{aq})
$$

Explain why a displacement reaction occurs.
09.11 What is the colour of the solution at the end of the reaction?

Figure 10.1 shows the outer shells of beryllium and fluorine.
Figure 10.1

10.1 Draw a diagram to show a molecule of fluorine, F_{2}

You only need to show the outer electron shells.

10.2 Beryllium reacts with fluorine to form beryllium fluoride.

Write down the empirical formula of beryllium fluoride.

10.3 Describe what happens

- when atoms of fluorine react with atoms of beryllium
- to the charge on any ions that form.

Use Figure 10.1 to help you.
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
[4 marks]
10.4 Fluorine is a gas at room temperature.

Beryllium fluoride is a solid at room temperature.
Explain why these two substances have these different properties.
You should include

- reference to the bonding involved
- a description of the structure of both fluorine and beryllium fluoride.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\begin{aligned} & \infty \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	\checkmark 오 愹 \sim					N	
	N		$\stackrel{\sim}{\sim}$			$\frac{\mathrm{C}}{\mathrm{~N}}+\stackrel{.}{4}$	
	\bullet	$\bigcirc \bigcirc$	लの标				
	\bigcirc	$\stackrel{\square}{\square} \stackrel{\text { oid }}{\substack{\text { ¢ }}}$				－ $\mathrm{N}_{\text {¢ }}^{\text {¢ }}$	
	＊				$\frac{\circ}{\Gamma} \text { に }$	숫으ㅁㅠㅡㅇㅇ	
	\cdots	m\％		ค			
				${ }^{\circ} \mathrm{C}$			
						がブロロ	
	－エ 驚－			O）${ }^{\circ}$		$\stackrel{\sim}{\circ}$ 으늘츨	
	$11 \mid 1$			¢언융N			
					0	¢ $<$ ¢	
					$Q_{i}^{\circ} \sum_{i}^{2}$		
$\frac{\infty}{\frac{\infty}{0}}$							$\underset{\sim}{2}$
$\begin{array}{ll} \frac{\infty}{\widetilde{N}} & \underline{1} \\ \stackrel{0}{0} & \vdots \\ \sum & \vdots \end{array}$							
				¢ ¢ ¢ ¢	－＞¢ ¢		
	N						
	τ		Nて【				

＊The lanthanides（atomic numbers 58－71）and the actinides（atomic numbers 90－103）have been omitted．
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number．

