Collins

AQA

GCSE

Mathematics

SET A - Foundation Tier

Author: Mike Fawcett

Answers

Key to abbreviations used within the answers

```
M method mark (e.g. M1 means }1\mathrm{ mark for method)
A accuracy mark (e.g. A1 means 1 mark for accuracy)
B independent marks that do not require method to be shown (e.g. B2 means 2 independent marks)
C communication mark
oe or equivalent
ft follow through
dep dependent on previous mark
cao correct answer only
sc special case
indep independent
```


Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.
All images are © HarperCollinsPublishers and Shutterstock.com
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302115
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data.
A CIP record of this book is available from the British Library.

Commissioning Editor: Kerry Ferguson
Project Leader and Management: Chantal Addy
Author: Mike Fawcett
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

Question	Answer	Mark	Comments
1 (a)	6	B1	
1 (b)	27	B1	
1 (c)	35	B1	
2	16	B1	
3	$2 x+8$	B1	
4 (a)	Triangular prism	B1	
4 (b)	Six vertices and 9 edges ticked	B1	With no other boxes ticked
5	$\frac{11}{4}$	B1	
6	125:75	M1	
	5:3	A1	
7 (a)	13	B1	
7 (b)	$3 n$ seen Or show that the sequence is going up in 3's	M1	
	$\begin{array}{\|l} \hline 3 n+1 \\ \text { Or } \times 3 \text { then }+1 \\ \text { implied } \\ \hline \end{array}$	M1	
	151	A1	cao
8	64 '-15’ then attempted	M1	In the correct order
	7	A1	Accept -7
9	$40 \div 3$ or 13 seen	M1	
	1.25×13	M1	Must attempt a partition method
	16.25	B1	cao
	£16.73	A1	scB1 for £17.50 (with no other method marks seen)
10 (a)	$468 \div 4$	M1	Accept 1 1/4 of 468
	117	A1	
10 (b)	$\begin{aligned} & \hline 360^{\circ}-90^{\circ}-120^{\circ} \\ & -78^{\circ}\left(=72^{\circ}\right) \\ & \hline \end{aligned}$	M1	
	$\frac{72}{360} \times 100$	M1	oe
	20\%	A1	
11 (a)	$x=15$	A1	
11 (b)	$3 x \leqslant 4+5$	M1	
	$x \leqslant 3$	A1	scB1 for answer of 3 if MO
11 (c)	4 or x^{3} seen	M1	
	$4 x^{3}$	A1	cao

Question	Answer	Mark	Comments
12 (a)	23	B1	
12 (b)	139-93	M1	
	46	A1	
12 (c)	An attempt to order the middle row or find the '12th' value	M1	
	113	A1	
13 (a)	Answer in range $125^{\circ}-130^{\circ}$	B1	
13 (b)	Answer in range $1.65-1.85 \mathrm{~km}$	B1	
13 (c)	Bearing of 290° drawn	B1	
	Point D marked exactly 4.4 cm from T	B1	Point D must be on bearing of 290° for 2 marks
14	$120 \div 5 \times 2(=48)$	M1	
	'120' - '48' (= 72)	M1dep	
	'72' $\div[4+5](=8)$	M1dep	
	40 mins	A1	
15 (a)	$\begin{aligned} & 50 \times(60 \div 6) \\ & (=500) \\ & 50 \div 6 \approx 8 \end{aligned}$	M1	
	$\begin{aligned} & 500 \times 8=4000 \text { or } \\ & 500 \times 20=10000 \\ & \text { or } \\ & 500 \times 24=12000 \\ & \\ & \prime 8 \prime \times 60 \times 8= \\ & 480 \times 8 ; 500 \times 8 \\ & =4000 \text { or } \\ & \prime 8 \prime \times 60 \times 24= \\ & 480 \times 24 ; 500 \times \\ & 20=10000 \text { or } \\ & \prime 8 \prime \times 60 \times 8= \\ & 480 \times 24 ; 500 \times \\ & 25=12500 \end{aligned}$	A1	This answer mark will be affected by the assumption made in part (b)
15 (b)	An assumption supports their method in part (a) e.g. 'the machine operates for 8 hours per day' or 'the machine operates for 24 hours a day'	B1	

Question	Answer	Mark	Comments
16 (a) Alt 1	$\frac{3}{25}>\frac{1}{10}>\frac{4}{50}$	B1	
	Benjamin	$\begin{gathered} \mathrm{C} 1 \\ \text { dep } \end{gathered}$	
16 (a) Alt 2	'Because they each did different numbers of trials'	B1	Accept similar statement
	'I can't tell'	$\begin{gathered} \mathrm{B} 1 \\ \text { dep } \end{gathered}$	Accept similar statement
16 (b)	Josue	B1	
	He did the most trials	B1	Accept similar statement
17 (a)	$\frac{6}{15}+\frac{5}{15}$	M1	oe, allow one error in the numerators
	$\frac{11}{15}$	A1	
17 (b)	$\frac{9 \times 1}{2 \times 6}$	M1	
	$\frac{3}{4}$	A1	oe
18 (a)	30 seconds	B1	
18 (b)	$\frac{1200}{5}$ or $\frac{1.2}{5}$	M1	
	$4 \mathrm{~m} / \mathrm{s}$	A1	
18 (c)	$\begin{aligned} & \frac{1200}{6} \div 60 \\ & (=3.33 \ldots \mathrm{mins}) \end{aligned}$	M1	
	3 mins 20 seconds	B1	
	Straight line drawn from $(6,1.2)$ to a point marked on the x axis between 9 and 9.5	A1	Point must be >9
19	$4 x$ or $x+12$ seen	M1	Accept other letters used instead of ' x '
	$x+4 x=x+12$	M1	
	3	A1	Trial and error scores zero unless final answer is correct

Question	Answer	Mark	Comments
20	$320 \pi \div 20(=16 \pi)$	M1	Allow $320 \div 20$
	$\sqrt{ }{ }^{16^{1}}(=4)$	M1	
	'4' $\times 2$	M1	
	8 cm	A1	cao
21 (a)	96000000	B1	Accept 96 million
21 (b)	5 in the correct order	B1	
	France, UK, Egypt, Japan, US, China	B1	Fully correct
21 (c)	$\begin{array}{\|l} 65500000 \text { or } \\ 6.55 \times 10^{7} \\ \hline \end{array}$	B1	In the 1st position
	$\begin{aligned} & 66500000 \text { or } \\ & 6.65 \times 10^{7} \end{aligned}$	B1	In the 2nd position
22	$\begin{aligned} & 100(\text { mins })=80 \% \\ & \text { or }(100 \div 80) \\ & \times 100 \end{aligned}$	M1	Allow any correct \% equivalent e.g. 50 (mins) $=$ 40\%
	125 minutes	A1	cao
23 (a)	$\sin 30^{\circ}=\frac{1}{2}$	B1	oe
23 (b)	$\sin 30^{\circ}=\frac{x}{5}$	M1	
	$\frac{1}{2} \times 5$	M1 ft	Allow ft from part (a)
	2.5 cm	A1	oe
24	$5^{-1}=\frac{1}{5} \text { or } 1-5^{-1}$	M1	
	$\frac{4}{5}$	A1	

Paper 2

Question	Answer	Mark	Comments
$\mathbf{1}$	2.4	B 1	
$\mathbf{2}$ (a)	2340 g	B 1	
$\mathbf{2 ~ (b) ~}$	640 cm	B 1	
$\mathbf{3}$ (a)	$2 x-2 y$	B 1	
$\mathbf{3}$ (b)	$12 a$	B 1	
$\mathbf{4} \mathbf{4}$	Regular	B 1	
	Hexagon	B 1	
$\mathbf{5}$	$4+6+3+1+7$ $(=21)$	M 1	Allow 1 error
	3	A 1	

Question	Answer	Mark	Comments
6	$(-1,2.5)$	B2	oe, 1 mark for each
7 (a)	$\begin{aligned} & (36 \div 5) \times 3 \text { or } \\ & (36 \div 5) \times 2 \end{aligned}$	M1	
	£14.40	A1	
7 (b)	$\begin{aligned} & \frac{16}{36}(=0.444 \ldots) \\ & \text { or } \frac{20}{36}(=0.555 \ldots) \end{aligned}$	M1	
	$\frac{20}{36} \times 100$	M1	
	55.6\% or 56\%	A1	Allow correct rounding of 2 significant figures or better
8	$\begin{aligned} & 51.84 \text { or } 4.828 \ldots \\ & \text { seen } \end{aligned}$	M1	
	10.73641...	A1	
9 (a)	Primary and continuous	B1	With no other boxes ticked
9 (b)	Ensure each student is equally likely to be picked, e.g. names in a hat	C1	Either a statement or example is acceptable
10 (a)	$2+12-8$ (=6)	M1	
	No, it equals 6	A1dep	
10 (b)	$\begin{aligned} & 2+3 \times(4-8) \text { or } \\ & 2+-12=-10 \end{aligned}$	B1	
11	At least 2 prime factors found, e.g. $\begin{aligned} & 2250=2 \times 1125 \\ & \text { and } 1125= \\ & 5 \times 225 \end{aligned}$	M1	
	$a=2$ and $b=3$	A1	
12	9:31 pm	B1	
13 (a)	13 in the eggs circle	B1	
	10 outside the circles	A1ft	Allow a ft mark for a correct answer leading from a correct method using their ' 13 '
13 (b)	$\frac{10 '}{50}$	M1ft	Allow ft from part (a)
	$\frac{10}{50}$ or $\frac{1}{5}$	A1	oe

Question	Answer	Mark	Comments
14	All numbers correctly converted to decimals or percentages e.g. 0.42..., 0.41, 0.385, 0.4	M1	
	$\begin{aligned} & 38.5 \%, \frac{1}{2} \text { of } \frac{4}{5} \\ & 0.41, \frac{3}{7} \end{aligned}$	A1	
15	$\frac{3}{5}: 1$ or $\frac{6}{5}$ seen	M1	oe
	$\frac{3}{5}: 1: \frac{6}{5}$	M1	oe
	3:5:6	A1	
16	Any factor pair with their product in the centre	M1	
	Any 2 factor pairs, with correct centre	M1	
	56 in the centre with 2 and 28,4 and 14,7 and 8	A1	Other centre values will work e.g 84, 112, etc.
17	$2 \times 100 \times 100$	M1	
	$20000 \mathrm{~cm}^{2}$	A1	
18 (a)	$\begin{aligned} & 4\left(x^{2}-3 x\right) \text { or } \\ & x(4 x-12) \end{aligned}$	M1	
	$4 x(x-3)$	A1	
18 (b)	$x-3<8$ or $x<11$	M1	
	$x=10$	A1	
19 (a)	$9^{2}-2 \times 9(=63)$	M1	
	180-2 \times '63'	M1	
	$y=54{ }^{\circ}$	A1	
19 (b)	$z=63^{\circ}$	B1ft	allow follow through from their ' $x^{2}-2 x$ '
	Alternate angles are equal OR co-interior angles sum to 180°	C1	

Question	Answer	Mark	Comments
20	Arcs from light house and cliffs intersecting and a straight line drawn through the two intersection points	B1	
	A circle with radius 2.5 cm drawn around the yacht	B1	Accept an arc which intersects with their perpendicular bisector
	A cross marked at the intersection of the circle and the perpendicular bisector	B1	
21	$1.5 \times 0.5\left(=0.75 \mathrm{~m}^{2}\right)$	M1	Accept 150×50 $=7500 \mathrm{~cm}^{2}$
	$\frac{3000}{10.75}$	M1dep	
	$4000 \mathrm{~N} / \mathrm{m}^{2}$	A1	
22	215 cm or 2.15 m seen Or correct method to find m per worker e.g. $10.75 \div 5$	M1	
	2.15×7	M1	
	15.05 m	A1	
23	8π	B1	
24	$\begin{aligned} & \hline 42,84,126, \ldots \\ & \text { and } \\ & 70,140,210, \ldots \end{aligned}$	M1	Allow errors if intention is clear
	210 identified	M1	Or a multiple of 210
	$x=5$ and $y=3$	A1	Or multiples of 5 and 3
25	Any translation	B1	The shape should be exactly the same size and orientation
	Fully correct translation Top right corner should be the point $(4,4)$	B1	

Question	Answer		Mark	Comments
26	$\begin{aligned} & \hline 180000 \div 1.18 \\ & \text { Or } 180000 \div 1.06 \\ & \hline \end{aligned}$		M1	
	$\begin{aligned} & 180000 \div 1.18 \div \\ & 1.06(=143907) \\ & \hline \end{aligned}$		M1	
	£144 000		A1	
27	161×20 (= 3220)		M1	
	$\begin{aligned} & \hline 145 \times 3+155 \times 6 \\ & +165 \times 6+175 \times \\ & 4(=3055) \\ & \hline \end{aligned}$		M1	
	$\begin{aligned} & \begin{array}{l} 3220-3055 \\ (=165) \end{array} \\ & \hline \end{aligned}$		M1dep	
	$160<h \leqslant 170$ should have frequency $=7$		A1dep	Zero marks with no working
28 (a)	$y=\frac{5 x}{3}+1$		M1	
	x -3 y -4	0 3 1 6	M1	At least one of these points correctly plotted
	Fully correct line plotted		B1	
	$x=1.5, y=3.5$		A1	scB1 if correct answer with no graph drawn
28 (b)	$y=-x+c$		M1	Allow gradient $=-1$
	$x+y=7$		A1	oe
29 (a)	12 to 12.30 am		B1	
29 (b)	Tangent drawn on the graph at 10.30 pm		M1	
	Answer in range 1.1-1.4 (cm/h)		A1	

Paper 3

Question	Answer	Mark	Comments
$\mathbf{1}$	9 tenths	B 1	
$\mathbf{2}$	First diagram circled	B 1	
$\mathbf{3}$ (a)	Isosceles	B 1	
$\mathbf{3 ~ (b) ~}$	65°	B 1	
$\mathbf{4}$	$1.03,1.095,1.3$, $1.303,1.33$	M 1	Any four in correct order
	Fully correct	A 1	
$\mathbf{5}$	$36-(11+10+7)$ $[=8]$	M 1	
	'8' $\div 2$ [= 4]	M 1	
	Last 2 bars with heights of 4	A 1	

Question	Answer	Mark	Comments
6 (a)	(-2, 4)	B1	
6 (b)	7 cm identified as base of the rectangle	M1	Could be implied by correct diagram drawn
	$(5,4)$ and $(5,1)$ in either order	A1	$\begin{aligned} & \text { Accept }(-9,4) \\ & \text { and }(-9,1) \end{aligned}$
6 (c)	$2 \times 3+2 \times{ }^{\prime}{ }^{\prime}$	M1ft	Where ' 7 ' is the base of their rectangle
	20 cm	A1	cao
7 (a)	48	A1	
7 (b)	No with 96 and 192 seen	A1	
8	Vertical line drawn up from H , then horizontal line drawn left from the top of the vertical line	M1	
	South East	A1	Allow correct bearing 135°
9 (a)	1.5	A1	
9 (b)	9.261	A1	
9 (c)	1024	A1	
10	Lists at least 4 factors of 40	M1	
	2 or 5 identified as prime Or 1 or 8 identified as a cube number	M1	
	8	A1	
11 (a)	31	A1	
11 (b)	$\begin{aligned} & \sqrt{(59+5)} \\ & 8 \end{aligned}$	A1	
12	False	B1	
	True	B1	
	Sometimes true	B1	
	True	B1	

Question	Answer	Mark	Comments
13	2×10.85 (= 21.70)	M1	A4 print is free
	$\begin{aligned} & 21.70-(2 \times 3.09 \\ & +1.52+3.80) \\ & {[=10.20]} \\ & \hline \end{aligned}$	M1	Allow 30.35 in place of 21.70
	$\begin{aligned} & \hline 2 \times 5.95- \\ & (2 \times 1.07+3.80) \\ & {[=5.96]} \\ & \hline \end{aligned}$	M1	
	$\begin{aligned} & \hline 8.65-(1.52+ \\ & 2.40)[=4.73] \end{aligned}$	M1	
	$\begin{aligned} & \text { '10.20' + '5.96' + } \\ & \text { '4.73' } \end{aligned}$	M1dep	
	£20.89	A1	cao
14	£125	B1	
15	$\begin{array}{ccc} \hline & 30 & 13 \\ 51 & & 17 \\ 51 & & 15 \\ & 21 & 6 \end{array}$	M1	At least 3 out of 6 numbers correct
	Fully correct diagram	A1	
16 (a)	584×0.188 [= 110]	M1	
	$\begin{aligned} & \frac{584-312-110}{584} \\ & \text { or } \frac{162}{584} \end{aligned}$	M1dep	
	$\frac{81}{292}$	A1	cao
16 (b)	$\begin{aligned} & \hline 312+30-12 \\ & {[=330]} \\ & \text { Or } \\ & 584+11+30+ \\ & 6-10-12-7 \\ & {[=602]} \\ & \hline \end{aligned}$	M1	
	$\frac{330}{602} \times 100$	M1dep	
	55\%	A1	or better (54.817....)\%
17	Complete method seen e.g. $\frac{19}{5} \times \frac{4}{3}$	M1	oe
	$\frac{76}{15}$	A1	
	$5 \frac{1}{15}$ inches	B1	

Question	Answer	Mark	Comments
18 (a)	At least 8 points plotted correctly	B1	Allow $\pm 1 \mathrm{sq}$ accuracy
18 (b)	No correlation	B1	
	Correct interpretation e.g. 'there is no connection between height and salary earned'	C1	
19	$\frac{26-19}{26} \times 100$	M1	
	26.9 \%	A1	Allow 27\%
20 (a)	€ 560	B1	$\begin{aligned} & \text { Allow €550 to } \\ & \text { €560 } \end{aligned}$
20 (b)	Uses the graph to find 300 euros $\approx £ 270$	M1	$\begin{aligned} & \text { Allow £260 to } \\ & £ 280 \end{aligned}$
	'270' $\times 1990$	M1dep	Converts any amount of £s to LBP
	Answer in the range (517 400 to 557 200) LBP	A1	
21	$\begin{aligned} & \hline \text { (exterior angle }=\text {) } \\ & 180-2 x \end{aligned}$	M1	
	$\frac{360}{180-2 x}$	M1	
	$\frac{180}{90-x}$	A1	
22	6.25 cm	B1	
23	$\begin{aligned} & \hline 2500 \mathrm{ml} \text { or } 0.5 \\ & \text { litres seen } \end{aligned}$	M1	
	$2500 \times(0.965)^{n}$	M1	Any positive value of n tried
	7 mins	A1	

Question	Answer	Mark	Comments
24	$\begin{array}{\|l} \hline 3 \times 4 \times 7 \\ \left(=84 \mathrm{~cm}^{3}\right) \\ \hline \end{array}$	M1	
	$\frac{1}{3} \times \pi \times 3^{2} \times 5$	M1	
	$\begin{aligned} & 15 \pi \text { or } 47.123 \ldots \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	M1	
	$\begin{aligned} & \frac{661}{84} \text { or } \frac{557}{55} \text { or } \\ & \frac{336}{15 \pi} \end{aligned}$	M1dep	
	$\begin{aligned} & \frac{661}{84} \text { and } \frac{557}{55} \\ & \text { and } \frac{336}{15 \pi} \end{aligned}$	M1dep	
	$\begin{array}{\|l\|} \hline \text { At least one of } \\ 7.869 \ldots \text { or } \\ 10.127 \ldots \text { or } 7.13 \ldots \end{array}$	A1	
	Zinc, iron, copper, silver and $7.8 \ldots$, and 10.1..., and 7.1... seen	C1dep	
25 (a)	$(x \pm 3)(x \pm 2)$	M1	
	($x+3$) $(x-2)$	A1	
25 (b)	$0,-6 \text { and }-6 \text { in }$ the table	M1	
	At least 6 points plotted correctly from (-3, ' 0 '), $\begin{aligned} & (-2,-4), \\ & \left(-1, '-6^{\prime}\right),\left(0,{ }^{\prime}-6^{\prime}\right), \\ & (1,-4),(2,0), \\ & (3,6) \end{aligned}$	M1	
	fully correct graph joined with a smooth curve	A1	
26 (a)	0.2 on the $1^{\text {st }}$ tail branch	B1	
	0.8, 0.2, 0.8 and 0.2 on the $2^{\text {nd }}$ flip	B1	
26 (b)	$0.8 \times$ ' 0.8 '	M1ft	
	0.64	A1	oe

