Collins

AQA GCSE Mathematics

SET A – Foundation Tier

Author: Mike Fawcett

Answers

Key to abbreviations used within the answers

- M method mark (e.g. M1 means 1 mark for method)
- A accuracy mark (e.g. A1 means 1 mark for accuracy)
 - independent marks that do not require method to be shown (e.g. B2 means 2 independent marks)
- C communication mark
- oe or equivalent
- ft follow through
- dep dependent on previous mark
- cao correct answer only
- sc special case
- indep independent

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images. All images are © HarperCollins*Publishers and* Shutterstock.com

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.

Published by Collins An imprint of HarperCollins*Publishers* 1 London Bridge Street London SE1 9GF

Acknowledgements

© HarperCollinsPublishers Limited 2018 ISBN 9780008302115 First published 2018 10 9 8 7 6 5 4 3 2 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins. British Library Cataloguing in Publication Data. A CIP record of this book is available from the British Library. Commissioning Editor: Kerry Ferguson Project Leader and Management: Chantal Addy Author: Mike Fawcett Cover Design: Paul Oates Inside Concept Design: Ian Wrigley Text Design and Layout: QBS Learning Production: Lyndsey Rogers

В

Paper 1

Question	Answer	Mark	Comments
1 (a)	6	B1	
1 (b)	27	B1	
1 (c)	35	B1	
	16	B1	
3	2 <i>x</i> + 8	B1	
4 (a)	Triangular prism	B1	
4 (b)	Six vertices and	B1	With no other
	9 edges ticked		boxes ticked
5	11	B1	
	4		
6	125 : 75	M1	
	5:3	A1	
7 (a)	13	B1	
	3 <i>n</i> seen	M1	
	Or show that		
	the sequence is		
1 F	going up in 3's		
	3 <i>n</i> + 1	M1	
	Or × 3 then + 1		
I –	implied 151	A1	
		M1	cao In the correct
	64 '–15' then $$		order
	attempted		
	7	A1	Accept –7
9	40 ÷ 3 or 13 seen	M1	
	1.25 × 13	M1	Must attempt a
			partition method
-	16.25	B1	cao
	£16.73	A1	scB1 for £17.50
			(with no other
			method marks
			seen)
	468 ÷ 4	M1	Accept 1/4 of 468
	117	A1	
	360° – 90° – 120°	M1	
-	– 78° (= 72°)		
	$\frac{72}{360}$ × 100	M1	oe
	300		
	20%	A1	
11 (a)	<i>x</i> = 15	A1	
11 (b)	$3x \leq 4+5$	M1	
	<i>x</i> ≤ 3	A1	scB1 for answer
			of 3 if M0
11 (c)	4 or x ³ seen	M1	
	4 <i>x</i> ³	A1	cao

Question	Answer	Mark	Comments
12 (a)	23	B1	
12 (b)	139 – 93	M1	
	46	A1	
12 (c)	An attempt to order the middle row or find the '12th' value	M1	
	113	A1	
13 (a)	Answer in range 125°-130°	B1	
13 (b)	Answer in range 1.65 – 1.85 km	B1	
13 (c)	Bearing of 290° drawn	B1	
	Point D marked exactly 4.4 cm from T	B1	Point D must be on bearing of 290° for 2 marks
14	120 ÷ 5 × 2 (= 48)	M1	
	'120' – '48' (= 72)	M1dep	
	'72' ÷ [4 + 5] (= 8)	M1dep	
	40 mins	A1	
15 (a)	50 × (60 ÷ 6) (= 500) 50 ÷ 6 ≈ 8	M1	
	$500 \times 8 = 4000 \text{ or}$ $500 \times 20 = 10000 \text{ or}$ $500 \times 24 = 12000$ '8' × 60 × 8 = $480 \times 8; 500 \times 8$ = 4000 or '8' × 60 × 24 = $480 \times 24; 500 \times$ 20 = 10000 or '8' × 60 × 8 = $480 \times 24; 500 \times$ 25 = 12500	A1	This answer mark will be affected by the assumption made in part (b)
15 (b)	An assumption supports their method in part (a) e.g. 'the machine operates for 8 hours per day' or 'the machine operates for 24 hours a day'	B1	

Question	Answer	Mark	Comments
16 (a) Alt 1	$\frac{3}{25} > \frac{1}{10} > \frac{4}{50}$	B1	
	Benjamin	C1	
16 (a) Alt 2	'Because they each did different numbers of trials'	dep B1	Accept similar statement
	'l can't tell'	B1 dep	Accept similar statement
16 (b)	Josue He did the most trials	B1 B1	Accept similar statement
17 (a)	$\frac{6}{15} + \frac{5}{15}$	M1	oe, allow one error in the numerators
	<u>11</u> 15	A1	
17 (b)	$\frac{9\times 1}{2\times 6}$	M1	
	$\frac{3}{4}$	A1	oe
18 (a)	30 seconds	B1	
18 (b)	$\frac{1200}{5}$ or $\frac{1.2}{5}$	M1	
	4 m/s	A1	
18 (c)	$\frac{1200}{6} \div 60$ (= 3.33 mins)	M1	
	3 mins 20 seconds	B1	
	Straight line drawn from (6, 1.2) to a point marked on the <i>x</i> axis between 9 and 9.5	A1	Point must be > 9
19	4 <i>x</i> or <i>x</i> + 12 seen	M1	Accept other letters used instead of 'x'
	x + 4x = x + 12	M1	
	3	A1	Trial and error scores zero unless final answer is correct

Question	Answer	Mark	Comments
20	320 <i>π</i> ÷ 20 (=16 <i>π</i>)	M1	Allow 320 ÷ 20
	√'16' (= 4)	M1	
	'4' × 2	M1	
	8 cm	A1	cao
21 (a)	96 000 000	B1	Accept 96 million
21 (b)	5 in the correct order	B1	
	France, UK, Egypt, Japan, US, China	B1	Fully correct
21 (c)	65 500 000 or 6.55 × 10 ⁷	B1	In the 1st position
	66 500 000 or 6.65 × 10 ⁷	B1	In the 2nd position
22	100 (mins) = 80% or (100 ÷ 80) × 100	M1	Allow any correct % equivalent e.g. 50 (mins) = 40%
	125 minutes	A1	cao
23 (a)	$\sin 30^\circ = \frac{1}{2}$	B1	oe
23 (b)	$\sin 30^\circ = \frac{x}{5}$	M1	
	$\frac{1}{2} \times 5$	M1 ft	Allow ft from part (a)
	2.5 cm	A1	oe
24	$5^{-1} = \frac{1}{5}$ or $1 - 5^{-1}$	M1	
	<u>4</u> 5	A1	

Paper 2

Question	Answer	Mark	Comments
1	2.4	B1	
2 (a)	2340g	B1	
2 (b)	640 cm	B1	
3 (a)	2x - 2y	B1	
3 (b)	12 <i>a</i>	B1	
4	Regular	B1	
	Hexagon	B1	
5	4 + 6 + 3 + 1 + 7 (= 21)	M1	Allow 1 error
	3	A1	

Question	Answer	Mark	Comments
6	(–1, 2.5)	B2	oe, 1 mark for
			each
7 (a)	(36 ÷ 5) × 3 <i>or</i> (36 ÷ 5) × 2	M1	
	£14.40	A1	
7 (b)	$\frac{16}{36} (= 0.444)$ or $\frac{20}{36} (= 0.555)$	M1	
	$\frac{20}{36} \times 100$	M1	
	55.6% or 56%	A1	Allow correct rounding of 2 significant figures or better
8	51.84 or 4.828 seen	M1	
	10.73641	A1	
9 (a)	Primary and continuous	B1	With no other boxes ticked
9 (b)	Ensure each student is equally likely to be picked, e.g. names in a hat	C1	Either a statement or example is acceptable
10 (a)	2 + 12 - 8 (=6)	M1	
	No, it equals 6	A1dep	
10 (b)	$2 + 3 \times (4 - 8)$ or 2 + -12 = -10	B1	
11	At least 2 prime factors found, e.g. $2250 = 2 \times 1125$ and $1125 =$ 5×225 a = 2 and $b = 3$	M1 A1	
12			
12 13 (a)	9:31 pm 13 in the eggs circle	B1 B1	
	10 outside the circles	A1ft	Allow a ft mark for a correct answer leading from a correct method using their '13'
13 (b)	<u>'10'</u> 50	M1ft	Allow ft from part (a)
	$\frac{10}{50} \text{ or } \frac{1}{5}$	A1	oe

Question	Answer	Mark	Comments
14	All numbers correctly converted to decimals or percentages e.g. 0.42, 0.41, 0.385, 0.4	M1	
	38.5%, $\frac{1}{2}$ of $\frac{4}{5}$, 0.41, $\frac{3}{7}$	A1	
15	$\frac{3}{5}$:1 or $\frac{6}{5}$ seen	M1	oe
	$\frac{3}{5}:1:\frac{6}{5}$	M1	oe
	3:5:6	A1	
16	Any factor pair with their product in the centre	M1	
	Any 2 factor pairs, with correct centre	M1	
	56 in the centre with 2 and 28, 4 and 14, 7 and 8	A1	Other centre values will work e.g 84, 112, etc.
17	2 × 100 × 100	M1	
	20 000 cm ²	A1	
18 (a)	$4(x^2 - 3x)$ or $x(4x - 12)$	M1	
	4x(x - 3)	A1	
18 (b)	<i>x</i> – 3 < 8 or <i>x</i> < 11	M1	
	<i>x</i> = 10	A1	
19 (a)	9 ² -2 × 9 (= 63)	M1	
	180 – 2 × '63'	M1	
	<i>y</i> = 54°	A1	
19 (b)	<i>z</i> = 63°	B1ft	allow follow through from their ' $x^2 - 2x$ '
	Alternate angles are equal OR co-interior angles sum to 180°	C1	

Question	Answer	Mark	Comments
20	Arcs from light	B1	
	house and cliffs		
	intersecting and a		
	straight line drawn		
	through the two		
	intersection points		
	A circle with	B1	Accept an arc
	radius 2.5 cm		which intersects
	drawn around		with their
	the yacht		perpendicular bisector
	A cross	B1	01360101
	marked at the	DI	
	intersection of		
	the circle and the		
	perpendicular		
	bisector		
21	1.5 × 0.5 (= 0.75m ²)	M1	Accept 150 × 50
			= 7500 cm ²
	3000	M1dep	
	'0.75'		
	4000 N/m ²	A1	
22	215 cm or	M1	
	2.15 m seen		
	Or correct		
	method to		
	find m per		
	worker e.g.		
	10.75 ÷ 5		
	2.15 × 7	M1	
	15.05 m	A1	
23	8π	B1	
24	42, 84, 126,	M1	Allow errors if
	and		intention is clear
	70, 140, 210,		
	210 identified	M1	Or a multiple of 210
	r = 5 and $r = 2$	۸1	
	x = 5 and y = 3	A1	Or multiples of 5 and 3
25	Any translation	B1	The shape
			should be
			exactly the
			same size and
			orientation
	Fully correct	B1	
	translation		
	Top right corner		
	should be the		
	point (4, 4)		

Question	Answer	Mark	Comments
26	180 000 ÷ 1.18 Or 180 000 ÷ 1.06	M1	
	180 000 ÷ 1.18 ÷ 1.06 (= 143 907)	M1	
	£144 000	A1	
27	161 × 20 (= 3220)	M1	
	145 × 3 + 155 × 6 + 165 × 6 + 175 × 4 (= 3055)	M1	
	3220 – 3055 (= 165)	M1dep	
	$160 < h \le 170$ should have frequency = 7	A1dep	Zero marks with no working
28 (a)	$y = \frac{5x}{3} + 1$	M1	
	x -3 0 3 y -4 1 6	M1	At least one of these points correctly plotted
	Fully correct line plotted	B1	
	<i>x</i> = 1.5, <i>y</i> = 3.5	A1	scB1 if correct answer with no graph drawn
28 (b)	y = -x + c	M1	Allow gradient = -1
	x + y = 7	A1	oe
29 (a)	12 to 12.30 am	B1	
29 (b)	Tangent drawn on the graph at 10.30pm	M1	
	Answer in range 1.1–1.4 (cm/h)	A1	

Paper 3

Question	Answer	Mark	Comments
1	9 tenths	B1	
2	First diagram circled	B1	
3 (a)	Isosceles	B1	
3 (b)	65°	B1	
4	1.03, 1.095, 1.3, 1.303, 1.33	M1	Any four in correct order
	Fully correct	A1	
5	36 - (11 + 10 + 7) [= 8]	M1	
	'8' ÷ 2 [= 4]	M1	
	Last 2 bars with heights of 4	A1	

Question	Answer	Mark	Comments
6 (a)	(-2, 4)	B1	
6 (b)	7 cm identified as base of the rectangle	M1	Could be implied by correct diagram drawn
	(5, 4) and (5, 1) in either order	A1	Accept (-9, 4) and (-9, 1)
6 (c)	2 × 3 + 2 × '7'	M1ft	Where '7' is the base of their rectangle
	20 cm	A1	cao
7 (a)	48	A1	
7 (b)	No with 96 and 192 seen	A1	
8	Vertical line drawn up from H, then horizontal line drawn left from the top of the vertical line	M1	
	South East	A1	Allow correct bearing 135°
9 (a)	1.5	A1	
9 (b)	9.261	A1	
9 (c)	1024	A1	
10	Lists at least 4 factors of 40	M1	
	2 or 5 identified as prime Or 1 or 8 identified as a cube number	M1	
	8	A1	
11 (a)	31	A1	
11 (b)	$\sqrt{(59+5)}$	A1	
12	False	B1	
	True	B1	
	Sometimes true	B1	
	True	B1	

Question	Answer	Mark	Comments
13	2 × 10.85 (= 21.70)	M1	A4 print is free
	21.70 – (2 × 3.09	M1	Allow 30.35 in
	+ 1.52 + 3.80)		place of 21.70
	[= 10.20]		
	2 × 5.95 –	M1	
	(2 × 1.07 + 3.80) [= 5.96]		
	[= 5.90] 8.65 – (1.52 +	M1	
	2.40) [= 4.73]		
	'10.20' + '5.96' +	M1dep	
	'4.73'		
	£20.89	A1	cao
14	£125	B1	
15	30 ¹³	M1	At least 3 out
	51 17 51 15		of 6 numbers correct
	21 ¹⁵ 6		
	Fully correct	A1	
	diagram		
16 (a)	584 × 0.188 [= 110]	M1	
	584 - 312 - 110	M1dep	
	584		
	or $\frac{162}{584}$		
		A1	сао
	<u>81</u> 292		
16 (b)	312 + 30 - 12	M1	
10 (0)	[= 330]	1911	
	Or		
	584 + 11 + 30 +		
	6 – 10 – 12 – 7 [= 602]		
		M1dep	
	$\frac{330}{602}$ × 100		
	55%	A1	or better
	/~		(54.817)%
17	Complete	M1	oe
	method seen		
	e.g. $\frac{19}{5} \times \frac{4}{3}$		
	76	A1	
	15		
		B1	
	$5\frac{1}{15}$ inches		
	-		

C

at 8 points d correctly rrelation et tetation here is no ction en height alary $\frac{9}{2} \times 100$	B1 C1 M1 A1 B1	Allow ± 1sq accuracy Allow 27% Allow €550 to €560		24	$3 \times 4 \times 7$ (= 84 cm ³) $\frac{1}{3} \times \pi \times 3^2 \times 5$ 15 π or 47.123 (cm ³) $\frac{661}{84} \text{ or } \frac{557}{55} \text{ or } \frac{336}{15\pi}$ $\frac{661}{84} \text{ and } \frac{557}{55}$	M1 M1 M1dep M1dep
et retation here is no ction en height alary $3^{2} - \times 100$ he graph	C1 M1 A1 B1	Allow €550 to			$\frac{1}{3} \times \pi \times 3^{2} \times 5$ $\frac{15\pi \text{ or } 47.123}{(\text{cm}^{3})}$ $\frac{661}{84} \text{ or } \frac{557}{55} \text{ or } \frac{336}{15\pi}$	M1 M1dep
retation here is no ction en height alary d' 9 × 100 6	M1 A1 B1	Allow €550 to			$\frac{15\pi \text{ or } 47.123}{(\text{cm}^3)}$ $\frac{661}{84} \text{ or } \frac{557}{55} \text{ or } \frac{336}{15\pi}$	M1dep
here is no ction en height alary $\frac{9}{2} \times 100$ he graph	A1 B1	Allow €550 to			$\frac{661}{84} \text{ or } \frac{557}{55} \text{ or } \frac{336}{15\pi}$	M1dep
ction en height alary d' <u>9</u> ×100 6 he graph	A1 B1	Allow €550 to	-		$\frac{661}{84} \text{ or } \frac{557}{55} \text{ or } \frac{336}{15\pi}$	
en height alary 3' 9	A1 B1	Allow €550 to	-		$\frac{336}{15\pi}$	
alary 3' 9 × 100 6 he graph	A1 B1	Allow €550 to			$\frac{336}{15\pi}$	M1dep
d' 9−×100 6 he graph	A1 B1	Allow €550 to			$\overline{15\pi}$	M1dep
6 he graph	A1 B1	Allow €550 to			661 557	M1dep
6 he graph	B1	Allow €550 to			$\frac{661}{24}$ and $\frac{557}{55}$	M1dep
he graph	B1	Allow €550 to			04	
- ·			-		84 55	
- ·		€560			and $\frac{336}{15\pi}$	
- ·	1				15/	
200	M1	Allow £260 to			At least one of 7.869 or	A1
300 euros		£280			10.127 or 7.13	
)			-		Zinc, iron,	C1dep
< 1990	M1dep	Converts any amount of			copper, silver	
		£s to LBP			and 7.8, and	
er in the	A1		- 1		10.1, and 7.1	
(517 400 to				- (-)	seen	N 44
00) LBP			2	5 (a)	$(x \pm 3)(x \pm 2)$	M1
or angle =)	M1		05	- (la)	(x + 3)(x - 2)	A1
x			- 20	(a) c		M1
	M1					M1
2 <i>x</i>					plotted correctly	
	A1				from (–3, '0'),	
					(-2, -4),	
m	B1		1			
nl or 0.5	M1		1			
een						A1
< (0.965) ⁿ	M1	Any positive gra		7.1		
7 mins		value of <i>n</i> tried	-		a smooth curve	
	A1		26	6 (a)	0.2 on the 1st tail	B1
3					branch	
3						B1
	x 2x m ml or 0.5 seen < (0.965) ⁿ	x M1 2x A1 m B1 ml or 0.5 M1 seen (0.965)" M1	x M1 $2x$ M1 $2x$ A1 m B1 ml or 0.5 M1 seen M1 $\langle (0.965)^n$ M1 Any positive value of n tried	x M1 $2x$ M1 $2x$ A1 m B1 ml or 0.5 M1 seen M1 $\langle (0.965)^n$ M1 Any positive value of n tried	xM1 $2x$ M1 $2x$ A1mB1ml or 0.5M1seenM1 $\langle (0.965)^n$ M1Any positive value of n tried	On angle -/Mit x M1 $2x$ M1 $2x$ M1 $2x$ A1 m B1ml or 0.5M1seenM1 $(0.965)^n$ M1Any positive value of <i>n</i> tried x A1 x Any positive value of <i>n</i> tried x

0.2 on the 2^{nd} flip

M1ft

A1

oe

0.8 × '0.8'

0.64

26 (b)

Comments