Collins

AQA

GCSE

Mathematics

SET A - Higher Tier

Author: Mike Fawcett

Answers

```
Key to abbreviations used within the answers
M method mark (e.g. M1 means }1\mathrm{ mark for method)
A accuracy mark (e.g. A1 means 1 mark for accuracy)
B independent marks that do not require method to be shown (e.g. B2 means 2 independent marks)
C communication mark
oe or equivalent
ft follow through
dep dependent on previous mark
cao correct answer only
sc special case
indep independent
```


Acknowledgements

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images.
All images are © HarperCollinsPublishers and Shutterstock.com
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2018
ISBN 9780008302122
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.
British Library Cataloguing in Publication Data.
A CIP record of this book is available from the British Library.

Commissioning Editor: Kerry Ferguson
Project Leader and Management: Chantal Addy and Richard Toms
Author: Mike Fawcett
Cover Design: Sarah Duxbury
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Karen Nulty

Paper 1

Question	Answer	Mark	Comments
1 (a)	$x<-1$	B1	
1 (b)	$-2 \leqslant x<2$	B1	
2	Equilateral	B1	
3 (a)	4	B1	
3 (b)	$16^{\frac{1}{2}} \text { and } 64^{\frac{1}{3}}$	B1	With no other boxes ticked
4	$\frac{15}{20}-\frac{8}{20}$ seen, oe.	M1	Allow one error in the numerators
	$21 \frac{7}{20}$	A1	oe
5	$2,3,3$, and 3 identified; could be within a factor tree.	M1	Allow one arithmetic error in the method
	$\begin{aligned} & 2 \times 3 \times 3 \times 3 \text { or } \\ & 2 \times 3^{3} \end{aligned}$	A1	
6	$40 \div 3$ seen or 13	M1	
	$\begin{aligned} & 1.25 \times ' 13 ' \\ & {[=16.25]} \end{aligned}$	M1	Must attempt a partition method
	'16.25' + 0.48	B1	cao
	$£ 16.73$	A1	scB1 for £17.50 (with no other method marks seen)
7	$\begin{aligned} & a=8, b=14, \\ & c=2, d=8 \end{aligned}$	B1	Any 2 correct
		B1	Fully correct
8	$120 \div 5 \times 2$ (= 48)	M1	
	'120' - '48' (= 72)	M1dep	
	'72' $\div[4+5](=8)$	M1dep	
	40 mins	A1	
9	$\begin{aligned} & \mathrm{ADE}=58^{\circ} \text { or } \\ & \mathrm{DGC}=77^{\circ} \end{aligned}$	M1	May be labelled on the diagram
	$x=77^{\circ}$	A1	
	Corresponding angles are equal and angles on a straight line add up to 180° Or Vertically opposite angles are equal with angles in a triangle add up to 180° and alternate angles are equal	C1	Allow 2 out of 3 reasons for C1

Question	Answer	Mark	Comments
10 (a)	$\begin{aligned} & 50 \times(60 \div 6) \\ & (=500) \\ & 50 \div 6 \approx 8 \end{aligned}$	M1	
	$\begin{aligned} & 500 \times 8=4000 \\ & \text { or } \\ & 500 \times 20=10000 \\ & 500 \times 24=12000 \\ & \\ & '^{\prime} \times 60 \times 8= \\ & 480 \times 8 \simeq 500 \times 8= \\ & 4000 \text { or } \\ & ' 8 ' \times 60 \times 24 \\ & =480 \times 24 \\ & \simeq 500 \times 20 \\ & =10000 \text { or } \\ & ' 8 ' \times 60 \times 24 \\ & =480 \times 24 \\ & \simeq 500 \times 25 \\ & =12500 \end{aligned}$	A1	This answer will depend on assumptions made
10 (b)	An assumption which supports their method in part (a) e.g. 'the machine operates for 8 hours per day' or 'the machine operates for 24 hours a day'	B1	
11 (a)	$4^{2}+2 \times 3 \times-2$	M1	
	$\sqrt{16-12}$	M1	
	$v=2$	A1	Allow $v=2$ and $v=-2$
11 (b)	$v^{2}-u^{2}=2 a s$	M1	
	$a=\frac{v^{2}-u^{2}}{2 s}$	A1	
12	$a=-2$	B1	
	$b=0.5$	B1	

Question	Answer	Mark	Comments	Question	Answer	Mark	Comments
13	$\begin{aligned} & 8 \times 1 \text { or } 2 \times 2 \text { or } \\ & 5 \times 1 \end{aligned}$	M1		18 (c)	$\frac{1200}{6} \div 60$	M1	
	$\begin{aligned} & 8+4(=12) \text { or } \\ & 4+5(=9) \end{aligned}$	M1	Award full method marks for subtraction method e.g.$(8 \times 3)-(2 \times 6)$		(= $3.33 \ldots \mathrm{mins}$)		
					3 mins 20 seconds	B1	
					Straight line drawn from $(6,1.2)$ to a point marked on the x axis between 9 and 9.5	A1	Point must be >9
	12 and 9 seen	B1					
	$\frac{\text { '12' - '9' }}{9}$	M1dep					
	33.3(333...)\%	A1		19	$\cos 60^{\circ}=\frac{1}{2}$	A1	
	No	C1dep					
14 (a) Alt 1	$\frac{3}{25}>\frac{1}{10}>\frac{4}{50}$	B1		20	$\begin{aligned} & x^{2}+5 x+6 \text { or } \\ & x^{2}+x-2 \text { or } \\ & x^{2}+2 x-3 \end{aligned}$	M1	
	Benjamin	C1dep					
$14 \text { (a) }$ Alt 2	'Because they each did different numbers of trials'	B1	Accept similar statement		$\begin{aligned} & x^{3}+3 x^{2}+2 x^{2}-x^{2} \\ & +6 x-3 x-2 x-6 \end{aligned}$	M1	Allow 4 out of 8 terms correct
	'I can't tell'	B1dep	Accept similar statement		$x^{3}+4 x^{2}+x-6$	A1	cao
14 (b)	Josue	B1		21	$\begin{aligned} & \operatorname{fg}(x)= \\ & (x-1)(x-1) \end{aligned}$	M1	or $\mathrm{fg}(x)=(x-1)^{2}$
	He did the most trials	B1	Accept similar statement		$(x-1)(x-1)$ $\mathrm{g}(x)=x-1$	A1	cao
15	$2 n^{2}$	B1		22 (a)	$\begin{aligned} & 3,8,15,33,50 \\ & 57,60 \end{aligned}$	B1	Fully correct cumulative frequencies
	$2 n^{2}-3$	A1					
16	$4 x$ or $x+12$ seen	M1	Accept other letters used instead of ' x '		At least 6 points plotted from $(1,3),(2,8),(3,15),$	B1ft	Allow follow through from part (a)
	$x+4 x=x+12$	M1			(4, 33), (5, 50),		
	3	A1	Trial and error scores zero unless final answer is correct		(6,57), (7, 60)		
					Points joined with a smooth curve	A1	Fully correct graph
				22 (b)	3.8 to 3.95 mins	B1	
17 (a)	7 (6) 13 (4) (9) (13) 11 15 (26)	B1	At least 3 out of 5 values correct	22 (c)	Whisker starts at zero, LQ at 3, median at	B1	Allow 3 correct, 2 of which must be median and upper or lower quartile
	Fully correct	B1			'3.8', UQ at 4.6,		
17 (b)	9	A1ft	oe		whisker ends at 7		
	$\overline{13}$				Fully correct box plot [ft values from their cumulative graph]	B1	
18 (a)	30 seconds	B1					
18 (b)	$\frac{1200}{5}$ or $\frac{1.2}{5}$	M1					

Question	Answer	Mark	Comments
23	Enlargement	B1	
	Scale factor -1.5	B1	
	centre (0,3)	B1	
24	$300 \times 2^{3}(=2400)$	M1	oe
	$2400 \div 1000$	M1 indep	Correct method seen to change any amount of ml into litres
	2.4 litres	A1	
25	$\begin{aligned} & \sqrt{12}=\sqrt{3} \times \sqrt{4} \text { or } \\ & \sqrt{27}=\sqrt{3} \times \sqrt{9} \end{aligned}$	M1	
	$4 \sqrt{3}+2$	A1	
26	$\frac{10}{7}$ (= Gradient of radius to the point)	M1	oe
	$m=-\frac{7}{10}$ (gradient of the tangent)	M1dep	oe
	$10=-\frac{7}{10} \times 7+c$	M1dep	
	$y=-\frac{7}{10} x+14.9$ or $10 y=149-7 x$	A1	oe

Paper 2

Question	Answer	Mark	Comments
$\mathbf{1}$	$7: 24$	B 1	
$\mathbf{2}$	$9: 31 \mathrm{pm}$	B 1	
$\mathbf{3}$	$(7,10,12)$	B 1	
$\mathbf{4}$	8π	B 1	
$\mathbf{5}$	Identity	B 1	
$\mathbf{6}$	x^{2}	B 1	
$\mathbf{7}$ (a)	Primary and continuous	B 1	With no other boxes ticked
$\mathbf{7}$ (b)	Ensure each student is equally likely to be picked e.g. names in a hat	C1	Either a statement or example is acceptable

Question	Answer	Mark	Comments
8	$\frac{(2 x+8)(x-2)}{2}$ or $2 x^{2}+8 x-4 x-16$	M1	Allow 1 error in the expansion
	Complete the proof to get $x^{2}+2 x-8$	A1	
9	$\begin{array}{\|l} \hline 42,84,126, \ldots \\ \text { and } \\ 70,140,210, \ldots \\ \hline \end{array}$	M1	Allow errors if intention is clear
	210 identified	M1	Or a multiple of 210
	$x=5$ and $y=3$	A1	Or multiples of 5 and 3
10	Any translation	B1	The shape should be exactly the same size and orientation
	Fully correct translation Top right corner should be the point $(4,4)$	B1	
11 (a)	$\begin{aligned} & 202000 \times 1.015^{n} \\ & \text { seen } \end{aligned}$	M1	n can be any positive integer
	5 years	A1	
11 (b)	$\begin{aligned} & 180000 \div 1.18 \\ & \text { Or } \\ & 180000 \div 1.06 \end{aligned}$	M1	
	$\begin{aligned} & 180000 \div 1.18 \\ & \div 1.06 \\ & (=143907) \\ & \hline \end{aligned}$	M1	
	£144 000	A1	
12 (a)	$\begin{aligned} & 2.176 \times 10^{4} \div \\ & 3.2 \times 10^{7} \end{aligned}$	M1	
	6.8×10^{-4}	A1	
	0.00068	B1	
12 (b)	$\left(\frac{1.15 \times 10^{-3}}{2.3 \times 10^{-5}}\right) \div 8$	M1	Allow 2 out of 3 terms correct
	$6.25 \mathrm{~N} / \mathrm{m}^{2}$	A1	

Question	Answer	Mark	Comments	Question	Answer	Mark	Comments
13	161×20 (= 3220)	M1		19 (b)	$15=2.5 \sqrt[3]{x}$	M1ft	
	$\begin{aligned} & 145 \times 3+155 \times 6 \\ & +165 \times 6+175 \times 4 \\ & (=3055) \end{aligned}$	M1			$x=216$	A1	
				20	$455 \div 5(=91)$	M1	
	$\begin{array}{\|l} \hline 3220 '-‘ 3055 ’ \\ (=165) \\ \hline \end{array}$	M1dep			and either 13 or 7 identified as a		
	$160<h \leqslant 170$ should have freq $=7$	A1dep	Zero marks with no working		factor of 91	A1	Allow 92 for full marks
14	$(x+5)(x-3)$	M1		21 (a)	$\frac{5 a}{2}+45 a=400$	M1	oe
	$x=3$ and -5	A1			$8.42 \mathrm{~m} / \mathrm{s}$	A1	
15 (a)	$y=\frac{5 x}{3}+1$	M1		21 (b)	$\begin{aligned} & 1.5 \times 10 \text { or } \\ & 0.4 \times 5 \text { or } \end{aligned}$	M1	
	x -3 0 3	M1	At least one of these points correctly plotted		0.4×15		
	y -4 1 6				$\begin{aligned} & 1.5 \times 10+0.4 \times 5 \\ & +0.4 \times 15 \end{aligned}$	M1	
	Fully correct line plotted	B1			23	A1	
	$x=1.5, y=3.5$	A1	scB1 if correct answer with no	22 (a)	$4\left[x^{2}-\frac{5}{4} x+3\right]$	M1	
		M1	graph drawn		$4\left[\left(x-\frac{5}{8}\right)^{2}-\frac{25}{64}+3\right]$	M1	
15 (b)	$y=-x+c$	A1	$\begin{aligned} & \mid=-1 \\ & \hline \text { oe } \end{aligned}$		$\left(\frac{5}{8}, 10 \frac{7}{16}\right)$ oe	A2	1 mark for each
16 (a)	$0.23 \times 0.23 \times 0.77$	M1		22 (b)	$(5,3)$	B2	1 mark for each
	0.040733	A1	Allow rounding to 0.04	23	$\begin{aligned} & \hline U B=50.005 \mathrm{~m}, \\ & L B=49.995 \mathrm{~m} \\ & U B=135.5 \mathrm{~s} \end{aligned}$	M1	At least one correct
16 (b)	$\sqrt{0.0961}(=0.31)$	M1			LB $=134.5 \mathrm{~s}$		
	0.69	A1			$\frac{200.02}{}$ or 199.98	M1dep	oe
17	$\frac{30}{360} \times \pi r^{2}(=2.5 \pi)$	M1	oe		$134.5 \quad 135.5$		
					$1.487(137546) \text { or }$	B1dep	
	$\sqrt{12 \times 2.5}$	M1	oe		1.475(867159)		
					1.5	A1dep	No marks if 1.5
	5.48 cm	A1					comes from
18 (a)	12 to 12:30 am	B1					4×50
18 (b)	Tangent drawn on the graph at 10:30 pm	M1					135
				24	$2 n(2 n+2)(2 n+4)$	M1	At least 2 correct
	Answer in range $1.1-1.4$ (cm/h)	A1					expressions for even,
19 (a)	$y=k \sqrt[3]{x}$	M1	$\begin{aligned} & \text { Allow } k=2.5 \\ & \text { for M1 } \end{aligned}$				consecutive numbers
	$y=2.5 \sqrt[3]{x}$	A1	oe		$\begin{aligned} & 8 n^{3}+16 n^{2}+8 n^{2} \\ & +16 n \end{aligned}$	M1ft	At least 2 terms correct
					$8\left(n^{3}+3 n^{2}+2 n\right)$	A1	

Question	Answer	Mark	Comments
25	$\overrightarrow{B C}=\frac{3}{4} \mathbf{b}$	M1	
	$\overrightarrow{C E}=\frac{1}{8} \mathbf{b}$	M1	
	$\overrightarrow{A E}=\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C E}$	M1	
	$\overrightarrow{A E}=\mathbf{a}+\frac{7}{8} \mathbf{b}$	A1	oe
26	$\begin{aligned} & C D=\frac{10.8 \sin 65}{\sin 61} \\ & (=11.191 \ldots) \end{aligned}$	M1	
	$\begin{aligned} & \sin \widehat{C B D} \\ & =\frac{' C D^{\prime} \times \sin 54}{9.1} \\ & (=0.994 \ldots) \end{aligned}$	M1dep	
	$\begin{aligned} & \widehat{C B D}=\sin ^{-1} \\ & \left(\frac{{ }^{\prime} C D^{\prime} \times \sin 54}{9.1}\right) \\ & (=84.233 \ldots) \end{aligned}$	M1dep	
	$\begin{aligned} & \frac{1}{2} \times 9.1 \times ' C D^{\prime} \times \\ & \sin ^{\prime} 41.766 \ldots{ }^{\prime} \end{aligned}$	M1dep	
	33.9 cm ${ }^{2}$	A1	

Paper 3

Question	Answer	Mark	Comments
1 (a)	£125	B1	
1 (b)	350×0.87	B1	
2	Geometric	B1	
3	$\begin{aligned} & x+y=7 \text { and } \\ & 5-y=x \end{aligned}$	B1	With no other boxes ticked
4	Top right diagram circled	B1	
5	6.25 cm	B1	
6 (a)	9.6474(95698)	B1	
6 (b)	9.65	B1ft	Allow follow through from answer to part (a)
7 (a)	At least 8 points plotted correctly	B1	Allow ± 1 sq accuracy
7 (b)	No correlation	B1	
	Correct interpretation e.g. 'there is no connection between height and salary earned'	C1	

Question	Answer	Mark	Comments
8	Attempt at a method to find prime factors for both $\begin{aligned} & 135=3 \times 3 \times 3 \times 5 \\ & 630=2 \times 3 \times 3 \times \\ & 5 \times 7 \end{aligned}$	M1	Accept at least one correct step for each
	either $3 \times 3 \times 3 \times 5$ or $2 \times 3 \times 3 \times 5 \times 7$ or $3 \times 3 \times 5$ seen	M1 indep	At least one fully complete
	$\mathrm{HCF}=45$	A1	
9	An example showing that when $x \leqslant 1, \frac{1}{x^{2}} \geqslant x$	M1	$\begin{aligned} & \text { e.g. when } \\ & \begin{array}{l} x=0.5 \\ \frac{1}{0.5^{2}}=4 \end{array} \end{aligned}$
	No	C1dep	
10	$\begin{array}{\|lll} & & 13 \\ 51 & 30 & 17 \\ & & 15 \\ & 21 & 6 \end{array}$	M2	1 mark for two correct entries 2 marks for three or four correct entries
	Fully correct diagram	A1	3 marks for fully correct
11	$\frac{26-19}{26} \times 100$	M1	
	26.9 \%	A1	Allow 27\%
12	Complete method seen e.g. $\frac{19}{5} \times \frac{4}{3}$	M1	oe
	$\frac{76}{15}$	A1	
	$5 \frac{1}{15}$ inches	B1	
13	$\begin{aligned} & \text { (exterior angle }=\text {) } \\ & 180-2 x \end{aligned}$	M1	
	$\frac{360}{180-2 x}$	M1	
	$\frac{180}{90-x}$	A1	

Question	Answer	Mark	Comments
14	$3 \times 4 \times 7\left(=84 \mathrm{~cm}^{3}\right)$	M1	
	$\frac{1}{3} \times \pi \times 3^{2} \times 5$	M1	
	$\begin{aligned} & 15 \pi \text { or } \\ & 47.123 \ldots\left(\mathrm{~cm}^{3}\right) \end{aligned}$	M1	
	$\begin{aligned} & \frac{661}{\prime 84^{\prime}} \text { or } \frac{557}{55} \text { or } \\ & \frac{336}{15 \pi^{\prime}} \end{aligned}$	M1dep	
	$\begin{aligned} & \frac{661}{{ }^{\prime} 84 '} \text { and } \frac{557}{55} \\ & \text { and } \frac{336}{115 \pi^{\prime}} \end{aligned}$	M1dep	
	At least one of 7.869... or 10.127... or 7.13...	A1	
	Zinc, Iron, Copper, Silver and $7.8 \ldots$, and $10.1 \ldots$, and 7.1... seen	C1dep	
15	Perpendicular bisector of Brooks and Redding constructed	M1	Arcs should be visible
	Arc / Circle about Dufresne with radius of 3.1 cm	M1	$\begin{aligned} & \text { Accept } 3 \rightarrow \\ & 3.2 \mathrm{~cm} \end{aligned}$
	Correct region shaded bounded by 'arc' and 'bisector'	A1dep	Dependent on at least one M1
16	$2 x^{2}-5 x-3 \leqslant 0$	M1	$\begin{aligned} & \text { Allow ' }=\text { ' in } \\ & \text { place of ' } \leqslant \text { ' } \end{aligned}$
	$(2 x+1)(x-3)$	M1dep	
	-0.5 or 3 identified as boundary solutions	A1dep	
	$-0.5 \leqslant x \leqslant 3$	A1	
17	Median = 21	B1	
	Upper quartile $=30.5$ Lower quartile $=9$	M1	At least one correct
	Yes, with 21, 30.5 and 9 identified	A1dep	

Question	Answer	Mark	Comments
18	2500 ml or 0.5 litres seen	M1	
	$2500 \times(0.965)^{n}$	M1	Any positive value of n tried
	7 mins	A1	
19 (a)	Bottom right diagram circled	B1	
19 (b)	A (parabolic) curve starting at zero and getting steeper	B1	
20	One correct angle identified from $\begin{aligned} & \widehat{A D C}=90^{\circ}, \\ & \widehat{B O C}=2 \times 38 \\ & (=76) \end{aligned}$	B1	
	$\begin{aligned} & 2 \times(' 90 '-38) \text { or } \\ & 180-{ }^{\prime} 76 \text { ' } \end{aligned}$	M1dep	
	$x=104^{\circ}$	A1	
21	$\begin{aligned} & x=0.2333 \ldots \text { or } \\ & 10 x=2.333 \ldots \text { or } \\ & 100 x=23.333 \ldots \\ & \hline \end{aligned}$	M1	
	$90 x=21$	M1dep	
	$\frac{21}{90}=\frac{7}{30}$	A1dep	
22 (a)	$5 x=3-x^{3}$	M1	Attempt to add 3 and subtract $5 x$ from both sides
	$x=\frac{3-x^{3}}{5}$	A1	
22 (b)	$0^{3}+5 \times 0-3=-3$ AND $1^{3}+5 \times 1-3=3$	M1	
	Sign changes, therefore x must lie between 1 and 0	C1	oe

Question	Answer	Mark	Comments
22 (c)	$x_{1}=\frac{3-0}{5}(=0.6)$	M1	
	$\begin{aligned} & x_{2}=\frac{3-' 0.6^{3}}{5} \\ & (=0.556 \ldots) \end{aligned}$	M1dep	
	$\begin{aligned} & x_{3}=0.565 \ldots, \\ & x_{4}=0.563 \ldots \text { and } \\ & x_{5}=0.564 \ldots \text { with } \end{aligned}$ 0.56 identified as the final answer to 2 decimal places	A1dep	
23 (a)	Even only: 4, 10, 20, 50, 100 Prime only: 5	B1	
	Intersection: 2	B1	
	Outside the circles: 1 and 25	B1	
23 (b)	$\frac{1}{9}$	A1	cao
24	$(\sqrt{2})^{n} \text { or }(\sqrt{2})^{9}$ seen	M1	
	$16 \sqrt{2}$	A1	cao
25	$\frac{4}{x-3}+\frac{3}{x+1}=1$	M1	
	$\begin{aligned} & \frac{4(x+1)}{(x-3)(x+1)}+ \\ & \frac{3(x-3)}{(x+1)(x-3)} \end{aligned}$	M1	
	$\begin{aligned} & (x-3)(x+1) \\ & =x^{2}-3 x+x-3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { indep } \end{gathered}$	3 out of 4 terms correct
	$\begin{aligned} & 7 x-5 \\ & =x^{2}-2 x-3 \end{aligned}$	M1dep	oe
	$x^{2}-9 x+2=0$	M1	
	$\frac{9 \pm \sqrt{81-4 \times 1 \times 2}}{2}$	M1	
	$\begin{aligned} & x=8.77, y=0.31 \\ & \text { and } \\ & x=0.23, y=2.44 \end{aligned}$	A1	Fully correct

Question	Answer	Mark	Comments
$\mathbf{2 6 (a)}$	$A G=\sqrt{1^{2}+1^{2}}$ $(=\sqrt{2})$	'1' could be replaced by any other chosen value for the side length of the cube	
	$A F=\sqrt{(\sqrt{2})^{2}+1^{2}}$ $(=\sqrt{3})$	M1 depft	Ft from their chosen value for '1'
	$1: \sqrt{3}$	A1	cao
$\mathbf{2 6 (b) ~}$	$\tan ^{-1}\left(\frac{1}{1 \sqrt{2^{\prime}}}\right)$	M1ft	Or their values for '1' and ' $\sqrt{2} '$ in part (a)
	35.3°	A1	cao

