## Collins

## AQA

GCSE
PHYSICS

## SET A - Foundation Tier

Author: Lynn Pharaoh

## Answers

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images Cover: © EMILIO SEGRE VISUAL ARCHIVES/AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY \& © Shutterstock.com/Jurik Peter
Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF

## Acknowledgements

© HarperCollinsPublishers Limited 2018
ISBN 9780008302177
First published 2018
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data
A CIP record of this book is available from the British Library.

Commissioning Editor: Rachael Harrison
Project Leaders and Management: Natasha Paul and Chantal Addy
Author: Lynn Pharaoh
Cover Design: Paul Oates
Inside Concept Design: Ian Wrigley
Text Design and Layout: QBS Learning
Production: Lyndsey Rogers

Paper 1

| Question | Answer(s) | Extra info | Mark(s) | AO/Spec <br> ref. |
| :--- | :--- | :--- | :---: | :--- |
| 01.1 | electrons are transferred from the <br> ruler to the cloth <br> a deficit/lack of negative electrons <br> on the ruler makes it positively <br> charged | 1 | 1 | AO1 |
| 01.2 | the cloth becomes negatively <br> charged | 1 | AO1 |  |


| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 03.1 | Level 2: A coherent plan covering all major steps presented in a logical order detailing the apparatus used. The plan could be followed by another person to obtain valid results. | 3-4 | 4 | $\begin{array}{\|l\|} \hline \text { AO2 } \\ 4.3 .1 .1 \end{array}$ |
|  | Level 1: Some relevant statements but the plan could not be followed by another person to obtain valid results. | 1-2 |  |  |
|  | No relevant content | 0 |  |  |
|  | Indicative content: <br> - mass of block measured <br> - (electronic) balance used to measure mass <br> - length, width and height of block measured <br> - dimensions measured using a rule (or Vernier callipers if the block will fit inside the callipers) <br> - volume calculated from $L \times W \times H$ <br> - substitute the mass and volume data into the density equation |  |  |  |
| 03.2 | A: steel <br> B: zinc <br> C: nickel |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{AO3} \\ 4.3 .1 .1 \end{array}$ |
| 04.1 | element with a nucleus that has same number of protons but different number of neutrons |  | 1 <br> 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.4 .1 .2 \end{aligned}$ |
| 04.2 | protons: 53 <br> neutrons 74 <br> electrons 53 |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{AO1} \\ & 4.4 .1 .2 \end{aligned}$ |
| 04.3 | (nucleus is unstable) and emits radiation to become more stable |  | 1 <br> 1 | $\begin{aligned} & \hline \mathrm{AO1} \\ & 4.4 .2 .1 \end{aligned}$ |
| 04.4 | (high speed) electron is ejected from the nucleus as a neutron turns into a proton |  | 1 <br> 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.4 .2 .1 \end{aligned}$ |
| 04.5 | time for countrate to fall by half for one pair of values, e.g. from $200 \rightarrow 100$ : 8 days time for countrate to fall by half for another pair of values, e.g. from $100 \rightarrow 50: 8$ days average $=8$ days | maximum 2 marks for determining half-life from only one section of graph allow 1 mark for correct answer with no working shown | 1 <br> 1 <br> 1 | $\begin{aligned} & \mathrm{AO3} \\ & 4.4 .2 .3 \end{aligned}$ |


| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 05.1 | they generate heat / they contain a heating element |  | 1 | A01 <br> 4.2.4.2 |
| 05.2 | ```energy (transferred) = power x time (Accept power = energy transferred / time)``` |  | 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.2 .4 .2 \end{aligned}$ |
| 05.3 | ```5 hours = 5 x 60 * 60=18000 s energy transferred = 50\times18000 energy transferred = 900000 (J)``` | 1 mark for correct conversion of hours to seconds 1 mark for substitution 1 mark for answer correct answer with no working shown = 3 marks | 3 | $\begin{aligned} & \mathrm{AO2} \\ & 4.2 .4 .2 \end{aligned}$ |
| 05.4 | $\begin{aligned} & 900000 \times 7 \\ & =6300000(\mathrm{~J}) \end{aligned}$ | allow error carried forward from 05.2 | 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.2 .4 .2 \end{aligned}$ |
| 06.1 |  | 1 mark for each correct line No more than 2 lines | 2 | $\begin{array}{\|l\|} \hline \mathrm{AO1} \\ 4.1 .1 .1 \end{array}$ |
| 06.2 | kinetic energy = store of kinetic energy $=0.5 \times$ $50 \times 6^{2}=900 \mathrm{~J}$ | 1 mark for substitution 1 mark for answer correct answer with no working shown = 2 marks | 1 <br> 1 | $\begin{aligned} & \mathrm{AO2} \\ & \text { 4.1.1.2 } \end{aligned}$ |
| 06.3 | ```gravitational potential energy = mass \times gravitational field strength x height``` |  | 1 | A01 <br> 4.1.1.2 |
| 06.4 | gravitational potential energy $=50 \times 9.8 \times 10$ <br> increase in gravitational potential energy store $=4900(\mathrm{~J})$ | 1 mark for substitution 1 mark for answer correct answer with no working shown = 2 marks | 1 <br> 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.1 .1 .2 \end{aligned}$ |
| 06.5 | kinetic energy = store of kinetic energy $=0.5 \times$ mass $\times(\text { speed })^{2}$ <br> kinetic energy $=$ $0.5 \times 50 \times 8^{2}$ <br> store of kinetic energy = 1600 (J) | 1 mark for substitution 1 mark for answer correct answer with no working shown = 2 marks | $1$ <br> 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.1 .1 .2 \end{aligned}$ |
| 06.6 | $\begin{aligned} & \text { energy } \\ & \text { dissipated = } \\ & 4900-1600 \\ & \text { energy } \\ & \text { dissipated = } \\ & 3300(\mathrm{~J}) \end{aligned}$ | allow error carried forward from 06.4 or 06.5 | 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.1 .2 .1 \end{aligned}$ |


| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 07.1 | $\begin{aligned} & (\Delta E=m c \Delta \theta) \\ & \Delta E=0.10 \times 4200 \\ & \times 10 \end{aligned}$ <br> increase in thermal energy of water $=4200$ ( J ) | 1 mark for substitution into correct equation 1 mark for answer correct answer with no working shown = 2 marks | 1 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.1 .1 .3 \end{aligned}$ |
| 07.2 | $\begin{aligned} & \Delta E=0.10 \times 500 \\ & \times 70 \\ & \text { decrease in } \\ & \text { thermal energy } \\ & \text { of block } \\ & =3500(\mathrm{~J}) \end{aligned}$ | 1 mark for substitution 1 mark for answer correct answer with no working shown = 2 marks | 1 <br> 1 | $\begin{aligned} & \text { AO2 } \\ & \text { 4.1.1.3 } \end{aligned}$ |
| 07.3 | either: <br> Some (thermal) energy is transferred to the beaker. or: <br> Some (thermal) energy is transferred to the surroundings. | Either statement for 1 mark | 1 | A01 4.1.2.1 |
| 08.1 | independent: length dependent: resistance control: thickness |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO3 <br> 4.2.1.3 |
| 08.2 | Level 2: A detailed and coherent plan covering all the major steps is provided. The steps are presented in a logical order that could be followed by another person to obtain valid results. | 3-4 | 4 | $\begin{aligned} & \text { AO2 } \\ & 4.2 .1 .3 \end{aligned}$ |
|  | Level 1: Simple statements relating to relevant apparatus or steps are made but may not follow a logical sequence. The plan would not enable another person to obtain valid results. | 1-2 |  |  |
|  | No relevant content | 0 |  |  |



| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 10.1 | The potential difference across each resistor has the same value. <br> The resistors are connected in series. | no more than two boxes ticked | 2 | $\begin{aligned} & \mathrm{AO1} \\ & 4.2 .2 \end{aligned}$ |
| 10.2 | total resistance $=5.0+5.0+5.0$ <br> total resistance $=15.0(\Omega)$ |  | 1 | $\begin{aligned} & \hline \mathrm{AO2} \\ & 4.2 .2 \end{aligned}$ |
| 10.3 | potential difference = current $\times$ resistance | allow $V=I R$ | 1 | A01 <br> 4.2.1.3 |
| 10.4 | $\begin{aligned} & 1.5=I \times 15 \\ & I=\frac{1.5}{15} \\ & \text { current }=0.10(\mathrm{~A}) \\ & \text { (accept } 0.1 \text { ) } \end{aligned}$ | 1 mark for substitution <br> 1 mark for rearranging 1 mark for answer correct answer with no working shown = 3 marks | 1 <br> 1 <br> 1 | AO2 <br> 4.2.1.3 |
| 10.5 | $\begin{aligned} & \text { charge = current } \\ & \times \text { time } \end{aligned}$ | allow $Q=1 t$ | 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.2 .1 .2 \end{aligned}$ |
| 10.6 | $\begin{aligned} & \text { time }=5 \times 60= \\ & 300 \mathrm{~s} \\ & \\ & \text { charge }= \\ & 0.10 \times 300 \\ & \text { charge }=30 \\ & \text { (C) } \end{aligned}$ | 1 mark for conversion of minutes to seconds 1 mark for substitution 1 mark for answer | 1 <br> 1 <br> 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.2 .1 .2 \end{aligned}$ |
| 10.7 | current directly proportional to pd (or voltage) <br> or <br> resistance is constant as current changes <br> or <br> labelled sketch or description <br> of current against potential difference as straight line graph through origin |  | 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.2 .1 .4 \end{aligned}$ |
| 10.8 |  |  | 1 | $\begin{aligned} & \hline \text { AO1 } \\ & 4.2 .1 .1 \end{aligned}$ |
| 10.9 | any two from: <br> - allows current one direction <br> - the current in th direction is zer <br> - the resistance is one direction a other / much la direction than | to flow in only <br> the reverse s very large in nd not in the rger in one the other | 2 | $\begin{aligned} & \mathrm{AO} 3 \\ & 4.2 .1 .4 \end{aligned}$ |
| 11.1 | Wood is an exam Either natural gas example of a foss | ple of a biofuel. s, coal or oil is an il fuel. | 1 <br> 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.1 .3 \end{aligned}$ |


|  | Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11.2 | either: <br> efficiency = <br> useful output energy transfer total input energy transfer Or: <br> efficiency = useful power output total power input |  | 1 | A01 <br> 4.1.2.2 |
|  | 11.3 | efficiency = $\frac{720}{1200} \times 100=60 \%$ <br> or <br> efficiency = $\frac{720}{1200}=0.6$ | 1 mark for substitution <br> 1 mark for answer <br> Allow final answer as \% or decimal correct answer with no working shown $=2$ marks | 2 | AO2 <br> 4.1.2.2 |
|  | 11.4 | Level 3: <br> Coherent and detailed account with several comparisons of reliability and environmental effects and including both advantages and disadvantages. | 5-6 | 6 | $\begin{aligned} & \mathrm{AO3} \\ & 4.1 .3 \end{aligned}$ |
| $\begin{aligned} & \overparen{0} \\ & 0 \\ & 0 \\ & \frac{1}{6} \\ & \frac{1}{0} \end{aligned}$ |  | Level 2: <br> Clear account with some valid comparisons of reliability and environmental effect. | 3-4 |  |  |
|  |  | Level 1: <br> Some relevant comments regarding reliability and environmental effects but comparisons may not be made. The descriptions are vague and lack sufficient detail. | 1-2 |  |  |
|  |  | No relevant content | 0 |  |  |


| Question | Answer(s) ${ }^{\text {Extra info }}$ | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: |
|  | Indicative content: <br> Advantages of wind power: <br> - renewable <br> - does not cause (atmospheric) pollution <br> - no greenhouse gas emissions <br> - does not contribute to climate change <br> - usually windy somewhere in the UK <br> Disadvantages of wind power: <br> - unpredictable <br> - not reliable (depends on weather) <br> - possible noise disturbance <br> - possible hazard to birds <br> - may be considered to have a negative visual impact <br> Advantages of coal power: <br> - reliable (always available, able to generate continuously) <br> - not dependent on the weather <br> - significant coal reserves worldwide <br> Disadvantages of coal power: <br> - not renewable <br> - creates atmospheric pollution (soot, sulfur dioxide) which may cause health problems / harm living things in environment / cause acid rain <br> - produces greenhouse gas emissions <br> - which contribute to climate change / global warming <br> - environmental pollution, loss of habitat in areas where coal is mined <br> - mining can be dangerous |  |  |

Paper 2

| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 01.1 | (force of) gravity / gravitational attraction |  | 1 | AO1 <br> 4.8.1.1 |
| 01.2 |  | 1 mark for each correct name in the correct box If a box is left empty or an incorrect answer is given in a box, marks can still be given to other answers that are correct provided they are in the correct sequence. | 3 | AO1 4.8.1.2 |
| 01.3 | A smaller B greater |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{array}{\|l\|} \text { AO3 } \\ 4.8 .1 .2 \end{array}$ |
| 02.1 | 5.0 Hz | only one box ticked | 1 | $\begin{array}{\|l\|} \mathrm{AO2} \\ 4.6 .1 .2 \end{array}$ |
| 02.2 | wavelength | only one box ticked | 1 | A01 \|4.6.1.2 |



| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 04.3 | An induced magnet becomes a magnet only when it is placed in a magnetic field (e.g. of a permanent magnet) and loses its magnetism when removed from the magnetic field. <br> A permanent magnet retains its magnetism |  | 1 | $\begin{aligned} & \text { AO1 } \\ & \text { 4.7.1.1 } \end{aligned}$ |
| 04.4 |  | 1 mark for one arrow on each line pointing from $N$ to $S$ maximum 2 marks | 2 | AO1 <br> 4.7.1.2 |
| 04.5 | Level 2: A clear, detailed plan covering all steps presented in a logical order. The plan could be followed by another person to complete the task as required. | 3-4 | 4 | $\begin{array}{\|l\|} \hline \text { AO2 } \\ \text { 4.7.1.2 } \end{array}$ |
|  | Level 1: Some relevant statements but the plan could not be followed by another person to complete the task. | 1-2 |  |  |
|  | No relevant content | 0 |  |  |
|  | Indicative content: <br> - place the bar magnet on a piece of paper and draw around the magnet <br> - place the compass close to (one end of) the magnet <br> - use a pencil to mark a dot at the point that the needle (of the compass) is pointing <br> - move the compass so that its centre is over the dot just made <br> - put another dot at the point that the needle (of the compass) is now pointing <br> - remove the compass and join the dots with an arrow from the first dot to the 2nd dot <br> - continue in the same way until a complete line is drawn from one point on the magnet to another |  |  |  |
| 05.1 | The resultant force on a stationary object is zero. <br> The resultant force on an object moving with constant velocity is zero. | only two boxes ticked | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{AO1} \\ & 4.5 .6 .2 .1 \end{aligned}$ |

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer(s) \& Extra info \& Mark(s) \& AO/Spec ref. \\
\hline 05.2 \& E \& only one box ticked \& 1 \& \[
\begin{aligned}
\& \text { AO1 } \\
\& 4.5 .6 .2 .1
\end{aligned}
\] \\
\hline 05.3 \& F \& \begin{tabular}{l}
1 mark for each correct letter \\
No more than two boxes ticked
\end{tabular} \& 2 \& A01
4.5.6.2.1 \\
\hline 05.4 \& \begin{tabular}{l}
Acceleration
\[
\frac{14-10}{2.5}
\] \\
Acceleration
\[
=1.6
\] \\
Unit: m/s \({ }^{2}\)
\end{tabular} \& \begin{tabular}{l}
1 mark for substitution \\
1 mark for answer \\
correct \\
numerical answer with no working shown = 2 marks \\
1 mark
\end{tabular} \& 2

1 \& | AO2 |
| :--- |
| 4.5.6.1.5 |
| AO1 |
| 4.5.6.1.5 | <br>

\hline 05.5 \& resultant force $=$ mass $\times$ acceleration \& accept $F=m a$ \& 1 \& $$
\begin{aligned}
& \text { AO1 } \\
& 4.5 .6 .2 .2
\end{aligned}
$$ <br>

\hline 05.6 \& \[
$$
\begin{aligned}
& \text { resultant force = } \\
& 4000 \times 1.6 \\
& \text { resultant force = } \\
& 6400(\mathrm{~N})
\end{aligned}
$$

\] \& | 1 mark for substitution |
| :--- |
| 1 mark for answer correct answer with no working shown $=2$ marks | \& 2 \& \[

$$
\begin{aligned}
& \text { AO2 } \\
& \text { 4.5.6.2.2 }
\end{aligned}
$$
\] <br>

\hline 05.7 \& resistive force = 8000-6400 resistive force = 1600 (N) \& 1 mark for substitution 1 mark for answer correct answer with no working shown = 2 marks \& 2 \& $$
\begin{array}{|l|}
\mathrm{AO2} \\
4.5 .1 .4
\end{array}
$$ <br>

\hline 06.1 \& air molecules coll surface \& de with the \& 1 \& A01

$$
4.5 .5 .2
$$ <br>

\hline 06.2 \& pressure = normal force $\div$ (surface) area \& accept $p=\frac{F}{A}$ \& 1 \& A01
4.5.5.1.1 <br>

\hline 06.3 \& \[
$$
\begin{aligned}
& 100000=\frac{\text { force }}{1.8} \\
& \text { force }=100000 \\
& \times 1.8 \\
& \text { force }=180000(\mathrm{~N})
\end{aligned}
$$

\] \& | 1 mark for substitution |
| :--- |
| 1 mark for rearranging |
| 1 mark for answer correct answer with no working shown = 3 marks | \& 3 \& \[

$$
\begin{array}{|l|}
\mathrm{AO2} \\
4.5 .5 .1 .1
\end{array}
$$
\] <br>

\hline 06.4 \& as height (above s atmospheric press \& ea level) increases, ure decreases \& 1 \& $$
\begin{aligned}
& \text { AO3 } \\
& 4.5 .5 .2
\end{aligned}
$$ <br>

\hline 06.5 \& pressure and heig selected for two one double the o conclusion that th suggestion is incor \& | ht data correctly different heights, ther |
| :--- |
| e student's rrect | \& | $2$ |
| :--- |
| 1 | \& | AO3 |
| :--- |
| 4.5.5.2 | <br>

\hline
\end{tabular}

| Question | Answer(s) | Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: | :---: |
| 06.6 | at sea level there is more air above the person <br> either: <br> the greater weight of air above the person exerts more force or: <br> there are more molecules colliding with a person's surface at sea level |  | 1 1 | AO1 $4.5 .5 .2$ |
| 07.1 |  | 1 mark for each of the three correct rays 1 mark for correct position of $F$ | $3$ <br> 1 | AO1 $4.6 .2 .5$ |
| 07.2 | distance from the centre of a lens to its principal focus |  | 1 | A01 4.6.2.5 |
| 07.3 |  | 1 mark each for each complete ray drawn as shown. <br> 1 mark for correct image labelled I | $2$ <br> 1 | A01 $4.6 .2 .5$ |
| 07.4 | measure the height / diameter of the object (actual cross-wire) using a rule / ruler / digital callipers measure the height/diameter of the image of the cross-wire divide the image height/diameter by the object height / diameter |  | $1$ <br> 1 <br> 1 $1$ | $\begin{aligned} & \mathrm{AO2} \\ & 4.6 .2 .5 \end{aligned}$ |
| 07.5 | 3.0 (accept 3) |  | 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.6 .2 .5 \end{aligned}$ |
| 07.6 | the greater the focal length, the greater the magnification (for a constant object distance) |  | 1 | AO3 $4.6 .2 .5$ |
| 07.7 | get data for a greater number of lenses use lenses with a greater range of focal lengths plot data on a graph / chart of magnification versus focal length | any two of the first three for 1 mark each <br> additional 1 mark if graph axes specified | 3 | AO3 $4.6 .2 .5$ |
| 08.1 | the distance from to the handle is $g$ position A than f for a bigger dista / turning effect is | the hinge / pivot greater for handle or position B ance, the moment greater | 1 <br> 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.5 .4 \end{aligned}$ |
| 08.2 | moment = force <br> $\times$ distance | Accept $M=F d$ | 1 | $\begin{aligned} & \mathrm{AO1} \\ & 4.5 .4 \end{aligned}$ |
| 08.3 | ```convert cm to m moment = 2.0 < 0.75 moment = 1.5 (N m)``` | 1 mark for unit conversion 1 mark for substitution 1 mark for answer correct answer with no working shown = 3 marks | 3 | $\begin{aligned} & \mathrm{AOO} \\ & 4.5 .4 \end{aligned}$ |


| Question | Answer(s) | Extra info | Mark(s) | AO/Spec <br> ref. |
| :--- | :--- | :--- | :---: | :--- |
| 08.4 | an anticlockwise moment | 1 | AO1 <br> 4.5 .4 |  |
| 08.5 | moment = <br> $200 \times 0.4$ | 1 mark for <br> substitution <br> 1 mark for <br> answer <br> correct answer <br> with no working <br> shown = 2 marks | 2 | AO2 |
|  | moment = <br> 80 (N m) | 4.5 .4 |  |  |


| Question | Answer(s) Extra info | Mark(s) | AO/Spec ref. |
| :---: | :---: | :---: | :---: |
|  | Indicative content: <br> - the length of the unstretched spring is measured using the metre rule <br> - a standard / known weight is attached to the spring <br> - the length of the spring is indicated by the pointer attached to the bottom of the spring <br> - the length of the stretched spring is measured using the metre rule <br> - extension is found by subtracting the unstretched length from the stretched length <br> - to minimise errors: <br> - view the pointer from the same horizontal level <br> - take repeat readings and average |  |  |
| 09.2 | C | 1 | $\begin{aligned} & \mathrm{AO} \\ & 4.5 .3 \end{aligned}$ |
| 09.3 | A | 1 | $\begin{aligned} & \mathrm{AO3} \\ & 4.5 .3 \end{aligned}$ |
| 09.4 | C | 1 | $\begin{aligned} & \mathrm{AO3} \\ & 4.5 .3 \end{aligned}$ |
| 09.5 | B | 1 | $\begin{aligned} & \mathrm{AO2} \\ & 4.5 .3 \end{aligned}$ |

