Collins

AQA GCSE Chemistry SET A – Higher Tier

Author: Sunetra Berry

Answers

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images. All images are © HarperCollins*Publishers and* Shutterstock.com

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.

Published by Collins An imprint of HarperCollins*Publishers* 1 London Bridge Street London SE1 9GF Acknowledgements

© HarperCollinsPublishers Limited 2018 ISBN 9780008302160 First published 2018 10 9 8 7 6 5 4 3 2 1 All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.

British Library Cataloguing in Publication Data. A CIP record of this book is available from the British Library. Commissioning Editor: Rachael Harrison Project Leader and Management: Natasha Paul and Chantal Addy Author: Sunetra Berry Cover Design: Paul Oates Inside Concept Design: Ian Wrigley Text Design and Layout: QBS Learning Production: Lyndsey Rogers

Н

Paper 1

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
01.1	Sodium chloride, Scandium	1	AO2 4.2.2.4 4.2.2.7
01.2	Carbon dioxide, Methane, Oxygen	1	AO2 4.2.2.4
01.3	$\left(\begin{array}{c} c_{a} \end{array} \right) \xrightarrow{\left(\begin{array}{c} F \end{array} \right)} \xrightarrow{\left(\begin{array}{c} F \end{array} \right)} \xrightarrow{\left(\begin{array}{c} c_{a} \end{array} \right)^{2}} \left[\begin{array}{c} c_{a} \end{array} \right]^{2} \left[\begin{array}{c} F \end{array} \right]_{2}^{2}$		AO2 4.2.1.3
	Diagram for calcium atom: 2 electrons transferred to form Ca ²⁺	1	
	Diagram for fluorine atom: 1 electron gained to form F ⁻	1	
	Therefore, need two Fs for each Ca (or one calcium reacts with two fluorine atoms). Two electrons from calcium atom are transferred, one to each of two F atoms.	1	
	Calcium fluoride is an ionic compound.	1	
01.4	Dot and cross diagrams only show how electrons are rearranged.	1	AO3 4.2.1.3
	Three-dimensional diagrams only show the arrangement of ions in space.	1	
	(or other sensible reason)		
02.1	polystyrene, or any suitable insulator	1	AO1 4.5.1.1
02.2	<i>x</i> -axis labelled 'volume', with units	1	AO2 4.4.2.2
	<i>y</i> -axis labelled 'temperature', with units	1	4.4.2.4
	suitable even scale for each axes	1	
	points correctly plotted	1	
02.3	lines of best fit correctly drawn	2	AO2 4.4.2.2 4.4.2.4
02.4	20 cm ³ allow ±0.1	1	AO3 4.4.2.2
02.5	$H^* + OH^- \rightarrow H_2O$	1	AO1 4.4.2.2 4.4.2.4
02.6	10 cm ³ = pH 2–4	1	AO2
	15 cm ³ = pH 2–4	1	4.4.2.2 4.4.2.4
	25 cm ³ = pH 10–12	1	4.4.2.4
	40 cm ³ = pH 10–12	1	
03.1		1	AO1 4.1.1.7

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
03.2	[] ²⁻	1 mark for correct number of electrons; 1 mark for brackets and 2–	1	AO2 4.1.1.7
03.3	The radius of an at 0.1 nm	om is about	1	AO1 4.1.1.5
03.4	Isotopes contain th number of protons Isotopes contain th number of electror	e same	1 1	AO1 4.1.1.5
03.5	Similarities: All isotopes have 8 protons/ 8 electrons / or they all have the same number of protons and the same number of electrons. Differences: They all have different number		1	AO1 4.1.1.5
03.6	of neutrons. (70 × 16) + (25 × 17) + (5 × 18) ÷ 100 = 16.35		1 1 1	AO2 4.1.1.6
04.1	The beam produce by an electric field. Flashes of light we when particles hit	re observed	1	AO1 4.1.1.3
04.2	Evidence: Most alpha particles passed straight through the gold foil. A small proportion of alpha particles rebounded. Explanation: As most passed through, the atom must be made mostly of empty space. Rebounding suggests the alpha particles hit a central positive nucleus.		2	AO3 4.1.1.3
05.1	Same volume of nitric acid and same mass of metal. React each metal in turn with acid. Start time and record time for bubbles to stop fizzing. One which stops fizzing first is the most reactive.		1 1 1 1	AO3 4.4.1.2
05.2	$2AI + 6HNO_3 →$ $2AI(NO_3)_3 + 3H_2$	1 mark for correct equation; 1 mark for balancing	2	AO2 4.1.1.1

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
05.3	72 \div 1000 = 0.072 d hydrogen gas 24 dm ³ of any gas c 1 mole of molecule a noble gas, e.g. an 0.072 \div 24 = 0.003	ontains s (atoms if it's gon)	1	AO2 4.3.5
06.1	$6 \times 6.02 \times 10^{23}$		1	AO2
00.1	= 3.612 × 10 ²⁴ (must Standard Form)	t be in	1	4.3.2.1
06.2	number of moles p 1 cm ³ = 2 ÷ 1000 =	0.002	1	AO2 4.3.2.5
	number of moles p 25 cm ³ = 0.002 × 25		1	
06.3	mass = number of moles $\times M_r$ mass = 0.05 \times 63 = 3.15 g (ecf)	1 mark for calculation; 1 mark for unit	2	AO2 4.3.2.5
06.4	$M_{\rm r} {\rm Fe(NO_3)_3} = 242$		1	AO1
	atom economy = (2 (160 + (6 × 63)) × 10	00	1	4.3.3.2
	= 89.96% = 90% to figures	2 significant	1	
06.5	2Fe + 6HNO ₃ → 2Fe(NO ₃) ₃ + 3H ₂	1 mark for correct equation; 1 mark for balancing	2	AO2 4.1.1.1 4.3.3.2
06.6	moles of Fe(NO ₃) ₃ in 200 000 ÷ 242 = 82		1	AO2 4.3.2.2
	1 mole Fe_2O_3 produces $Fe(NO_3)_3$ (from equations) from equations of $Fe_2O_3 = 82$	ation)	1	
	413.22 moles		1	
	mass of $Fe_2O_3 = mo$ 413.22 × 160 = 66 1	15.70 g	I	
	= 66 115.70 ÷ 1 000 tonnes to 3 s.f.	000 = 0.0661		
06.7	6:1 mole ratio, so moles of HNO ₃ = 6 × 826.45 = 4958.7 moles		1	AO2 4.3.2.2 4.3.4
	volume of HNO ₃ us 4958.7 ÷ 2 = 2479.3	ed = 5 dm³	1	
	2480 dm³ to 3 s.f.		1	
07.1	Swirl or dropwise add titrant from the burette towards end point or until the indicator changes colour / correct colour change of indicator given (pink to colourless for phenolphthalein; yellow to red for methyl orange; blue to red for litmus)		2	AO1 AO3 4.3.4

Question	Answer(s) Extra info	Mark(s)	AO/Spec ref.
07.2	equation: NaOH + HCI → NaCl + H ₂ O So, 1 mole NaOH reacts with 1 mole HCI	1	
	moles of NaOH in 25 cm ³ = 25 \div 1000 × 1 = 0.025 if x cm ³ HCl is needed for complete reaction (end point of the titration)	1	
	x cm ³ HCl contains 0.025 mole HCl 1 dm ³ HCl contains 0.025 ÷ x × 1000 mole HCl, which is the concentration of the acid in mol/dm ³	1	
07.3	Repeat the titration with further aliquots of NaOH until concordant titres are obtained.	1	
08.1	hydrogen ion or H⁺	1	AO1 4.4.2.4
08.2	any one from: Acid A is a strong acid OR Acid B is a weak acid. Acid A dissociates fully OR Acid B does not dissociate fully. The concentration of H ⁺ is the	1	AO2 4.4.2.6
	same as the concentration of Acid A / less than the concentration of Acid B. Plus one from: Rate of reaction depends on number of collisions between H ⁺ and CaCO ₃ .	1	
	If Acid A and Acid B have the same concentration, the concentration of H^+ is higher for Acid A and so CO_2 is produced in a shorter time.		
08.3	24 dm³ (24 000 cm³)	1	AO2 4.3.5
08.4	conversion of volumes from cm ³ to dm ³ ; division by 1000	1	AO2 4.3.5
	Moles of CO ₂ produced in 2 mins with Acid A = $11 \times 10^{-3} \div 24$ 4.58 × 10^{-4} moles (3 s.f. and in Standard Form)	1	
08.5	рН 1	1	AO2 4.4.2.4
08.6	no because it is a weak acid and will not dissociate to form the same concentration of H ⁺ ions. The pH will not change as much.	1	AO2 4.4.2.4
09.1	A brown solid / coating appears over magnesium. The blue solution of copper sulfate solution becomes paler / colourless.	1	AO1 4.4.1.2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
09.2	Magnesium. It has to form Mg ²⁺ ions. Mg(s) \rightarrow Mg ²⁺ (aq) +		1	AO2 4.4.1.4
09.3	Mg(s) + Cu ²⁺ (aq) → Mg ²⁺ (aq) + Cu(s)	1 mark for balanced equation; 1 mark for state symbols	2	AO2 4.4.1.4 4.1.1.1 4.2.2.2
09.4	A – silver metal B – silver in a soluti nitrate C – magnesium me		1 1	AO3 4.5.2.1
	D – magnesium in a magnesium nit	a solution of	1	
09.5	Mg is the most read (and the most likely oxidised).		1	AO1 4.5.2.1
	Ag is the least reac (and the most likely reduced).		1	
	Using most and lea metals should prod voltage.		1	
09.6	Mg(s) + 2Ag⁺(aq) → Mg²⁺(aq) + 2Ag(s)	1 mark for balanced equation; 1 mark for state symbols	2	AO2 4.4.1.4 4.1.1.1 4.2.2.2
10.1	Level 3: A detailed coherent comparise which demonstrate knowledge and un of the key scientific response makes log between the point uses sufficient exar support these links	on is given, es a broad derstanding c ideas. The gical links s raised and nples to	5–6	AO3 4.4.3.3 4.4.3.4
	Level 2: A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise. For example, the idea that there are mixed ions with aqueous magnesium chloride; but the correct ionic equations may not be given. Level 1: Simple statements are made which demonstrate a		3-4	
	basic knowledge of relevant ideas. The may fail to make co between the point For example, the ic positive ions are at the negative electr negative ions are a the positive electro	f some of the response omparisons s raised. lea that the tracted to ode and ttracted to		

estion	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
	No relevant conten	t	0	
	Indicative content			
	Molten magnesium	ı chloride		
	High temperature r melt magnesium ch			
	Mg ²⁺ ions attracted negative cathode.	to the		
	Cl ⁻ ions attracted to anode.	o the positive		
	Cathode Mg ²⁺ (l) + 2	2e⁻ → Mg(s)		
	Anode 2CI-(I) \rightarrow Cl ₂	(g) + 2e⁻		
	Aqueous magnesiu	m chloride		
	Carried out at low temperature	/ room		
	Mixture of ions pre H⁺ / Cl⁻ / OH⁻ ions	sent / Mg ²⁺ /		
	Mg ²⁺ and H ⁺ ions at the negative catho			
	Cl ⁻ and OH ⁻ ions at the positive anode.			
	cathode: 2H ⁺ (l) + 2e	e⁻ → H₂(g)		
	anode: $2CI^{-}(I) \rightarrow CI_{2}$	(g) + 2e⁻		
	Explanation			
	Hydrogen is less rea Mg and is more eas This will be formed cathode in the elec aqueous magnesium	ily reduced. at the trolysis of		

Paper 2

Que

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
01.1	Heavy fuel oil		1	AO1 4.7.1.2
01.2	Any three from: crude oil is heated it boils and gaseou pass into the fractic column the fractionating co cooler at the top compounds / molec condense at a regio column that is the s boiling point	onating olumn is cules on of the	3	A01/ A02 4.7.1.2
01.3	any one from: fuels, solvents, lubi polymers, deterger		1	AO1 4.7.1.2
01.4	H-C-H	о О—Н	1	AO2 4.7.1.2 4.7.2.4

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.	Question
01.5	alkane general formula of alkanes = C_nH_{2n+2} accept it is a saturated hydrocarbon	explanation required for the mark	1	AO1 4.7.1.1	
01.6	compared with petrol, diesel is more viscous is less flammable has higher boiling point	allow converse arguments	1 1 1	AO2 4.7.1.3	
01.7	$C_{14}H_{30} \rightarrow 3C_{2}H_{4} + C_{8}H_{18}$	all symbols and balancing must be correct	1	AO2 4.1.1.1 4.7.1.4	
01.8	steam cracking, any higher temperature very quick reaction lots of alkenes mac	2	2	AO2 4.7.1.4	
	catalytic cracking , a zeolite catalyst use more small chain al longer chains broke	d kanes made	2		
02.1	(both are safe to dr potable water cont substances / pure w contain any dissolve	ains dissolved ater does not	1	AO1 4.10.1.2	
02.2	River B three reasons (refer and safety recomm		1	AO3 4.10.1.2	
	less chloride than A safe limits less sodium that A a safe limits	and within	1		
	pH higher than A a safe limits	nd within	1		
02.3	filtration sterilisation		1 1	AO1 4.10.1.2	
02.4	to kill pathogens / ·	to sterilise	1	AO1 4.10.1.2	
02.5	Level 3: A detailed coherent compariso which demonstrate	on is given,	5–6	AO3 4.10.1.2	03.1
	knowledge and un of the key scientific	ideas. The			03.2
	response makes log between the point and uses sufficient to support these lir answer includes an	s raised examples nks. The			03.3
	of the limitations/b the source location	enefits of . A link is			03.4
	made between the removing contamir required in the trea processes and type needed.	ants, energy atment			03.5

uestion	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
	Level 2: A descripti given which demor reasonable knowle understanding of t scientific ideas. Cor are made but may articulated and / or For example proces be given, but not li particular contamir than one idea is pre energy requiremen removal of pollutar Level 1: Simple stat made which demor basic knowledge of relevant ideas. The may fail to make co between the point: For example more are required for tree of sea water compa to groundwater, wi qualification. Answ	nstrates a dge and he key mparisons not be fully precise. asses may inked to nants. More esent such as its linked to nts. ts linked to nts	3–4	
	to the idea of pollu	itants only.	0	
	Indicative content			
	Both sources – steri with one of ozone, ultraviolet radiation Seawater only Desalination by dis reverse osmosis	chlorine or n		
	Large amounts of er Can only occur nea Plentiful supply Groundwater only	3, 1		
	Needs to be pumpe groundwater source Already naturally fi through rock so ex- not needed	e iltered		
	May be contaminat pesticides or fertilis need to be remove	sers which		
	Limited supply – if run out Overuse can lead to	-		
03.1	reaction is reversib		1	AO1 4.6.2.1
03.2	it is endothermic		1	AO1 4.6.2.2
03.3	450 °C iron catalyst 200 atmospheres		1 1 1	AO1 4.10.4.1
03.4	ammonium hydrox phosphoric acid	ide	1 1	AO2 4.10.4.2
03.5	N = nitrogen P = phosphorus K = potassium	1 mark for two correct; 2 marks for all three correct	2	AO1 4.10.4.2

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
03.6	calcium phosphate + nitric acid → calcium nitrate + phosphoric acid phosphoric acid + ammonium hydroxide → ammonium phosphate + water	in each equation: 1 mark for products and 1 mark for reactants	2	AO2 4.10.4.2
04.1	Stationary phase = Mobile phase = me		1 1	AO1 4.8.1.3
04.2	Horse 2		1	AO2 4.8.1.3
04.3	caffeine = $7.5 \div 10$ paracetamol = $3 \div$		1 1	AO2 4.8.1.3
04.4	distance of spot = 0 9.0 cm	0.75 × 12 =	1	AO2 4.8.1.3
04.5	sketch should show solvent, with start solvent		1	AO2 4.8.1.3
	three spots on the start line (caffeine, paracetamol, horse 4)		1	
05.1	compare the spectra of the combined metals and match them to the individual metals in the spectra given		1	AO2 4.8.3.7
05.2	Place the sample in pass the light giver a spectroscope		1	AO2 4.8.3.7
05.3	The spectrum for N matches part of the for Ca ²⁺ so it is diffi them apart	e spectrum	1	AO2 4.8.3.7
05.4	sulfate: add barium dilute hydrochloric halide: add silver n dilute nitric acid cation test: add Na	acid itrate and	1 1 1	AO1/ AO3 4.8.3.1 4.8.3.2 4.8.3.4 4.8.3.5
05.5	Salt A = lithium bro Salt B = iron(III) sul Salt C = calcium ioc	fate	1 1 1	AO1/ AO2 4.8.3.1 4.8.3.2 4.8.3.4 4.8.3.5
05.6	any two from: flame emission spe is more accurate is more sensitive can measure conce		2	AO2 4.8.3.7 4.8.3.6

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
06.1	Level 3: A detailed safe method is give would produce vali The maximum volu resolution of the en needed to measure given.	en which d results. me and quipment	5–6	AO1/ AO3 4.6.1.2
	Level 2: A safe met described which wo valid results but so detail is missing. Th volume and resolut the equipment nee	ould produce me of the ne maximum tion of some	3–4	
	Level 1: A simple m given which demor some of the require procedures needed produce valid resul not produce valid r its entirety. It show understanding of r	nstrates ed practical I to ts but will esults in vs some	1–2	
	No relevant conten	ıt	0	
	Indicative content wear safety glasses			
	Control variables use a weighing bal measure of the san	ne mass of		
	each compound e.g use the same powc area of each cataly	lered surface		
	same volume of H ₂ C use a 50 cm ³ pipette flask to measure it o	or volumetric		
	Method put the H ₂ O ₂ in a 29 flask with a bung in with a delivery tub syringe or upturner cylinder in a trough water	n the top e to a gas d measuring		
	add the catalyst to start the stop clock measure volume ev	<u> </u>		
	15 seconds until the reaction	e end of		
	record volume of g every 15 seconds	-		
	ask another group procedure plot a graph of all			
	compare results			
06.2	ectants of reaction	1 mark for curve labelled 'without catalyst'; 1 mark for lower curve labelled 'with catalyst'	2	AO1 4.6.1.4

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.
06.3	a catalyst provides alternative reaction with a lower activa so more reactants energy greater tha activation energy	n pathway tion energy will have	2	AO1 4.6.1.4
06.4	labelled axes are needed: vertical axis label		1	AO2 4.6.1.1
	is 'Mass (g)', horizontal axis label is 'Time (min)' correct plots correct line of	correct plots (2 marks for all six correct; 1 mark for 4 or 5 correct)	2	
	best fit			
06.5	gradient line drawı 3 minutes;		1	AO2 4.6.1.1
	draw a suitable gra		1	
	correct calculation of the gradient from their tangent (gradient range between 6 × 10 ⁻³ to 9 × 10 ⁻³ acceptable)		1	
	units g/min		1	
06.6	curve should be be curve (line of best ⁻ for 06.4		1	AO3 4.6.1.2
	they should both re same final mass los		1	
07.1	repeating units (top to bottom): $\begin{pmatrix} H & H \\ C & -C \\ H & H \end{pmatrix}$ addition $\begin{bmatrix} 0 & 0 & H & H \\ C & -C & N & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & - \\ C & 0 & 0 & -N & -N & - \\ C & 0 & 0 & -N & -N & - \\ C & 0 & 0 & -N & -N & - \\ C & 0 & 0 & -N & -N & - \\ C & 0 & 0 & -N & -N & -N & - \\ C & 0 & 0 & -N & -N & -N & -N & -N \\ C & 0 & 0 & -N & -N & -N & -N & -N & -N \\ C & 0 & 0 & -N & -N & -N & -N & -N & -N \\ C & 0 & 0 & 0 & -N & -N & -N & -N & -N \\ C & 0 & 0 & 0 & -N & -N & -N & -N & -N & $	1 mark for each polymer correctly drawn along with the type of polymerisation	3	A01/ A02 4.7.3.1 4.7.3.2
07.0	condensation	la a contra di Anno		4.02
07.2	paper (no mark without giving reasons)		1	AO3 4.10.2.1
	any two reasons from:		2	
	less energy needed	to make it		
	higher rate of biod	egradability		
	made from renewa	ble source		

Question	Answer(s)	Extra info	Mark(s)	AO/Spec ref.	
07.3	mention of: paper causes more pollution compared to plastic harder to decide/no obvious choice not sure if benefits outweigh disadvantages/more info needed		1	AO3 4.10.2.1	
			1		
			1		
07.4	life-cycle assessments can be misinterpreted		2	AO3 4.10.2.1	
	need all relevant information to make an informed choice				
08.1	Reaction 2 (must have reason for mark) two reasons from: there are more moles (4) on the left-hand side but only 2 moles on the right-hand side; reaction 3 has a lower difference in the moles on the left-hand side compared to the right-hand side		1	AO3 4.6.2.7	
			2		
	reaction 1 is not in gaseous state, so not affected by pressure				
08.2	all three reactions are exothermic; therefore the increase in temperature will cause the equilibrium to shift to the left		1	AO2 4.6.2.6	
	favouring the endo reaction so as to re temperature		1		
08.3	Reaction 4 is endot whereas reaction 3		1	AO3 4.6.2.6	
	reaction 4 will incre temperature increa the yield of produc	ne yield of products in 1 action 4 will increase with a emperature increase, whereas the yield of products in factions 3 will decrease			
The increase in temperature cause the equilibrium posi- in reaction 4 to shift to the right, whereas the equilibr position in reaction 3 will s to the left		um position ft to the equilibrium	1		