Collins

AQA

GCSE

PHYSICS

SET A - Paper 2 Foundation Tier

Author: Lynn Pharaoh

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a calculator.
- the Physics Equation Sheet (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 04.5 and 09.1 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Name:
01.1 Give the name of the force that pulls gas and dust together to start the formation of a star.
01.2 Figure 1.1 shows some of the stages in the life cycle of a star that is about the same size as the Sun.

Figure 1.1

Complete Figure 1.1 by writing the names of the 3 missing stages for such a star.
01.3 The two sketch graphs in Figure 1.2 show information about main sequence stars.

Figure 1.2

Using information from the graphs, complete the following sentences.
Choose words from the box.

$$
\text { greater } \quad \text { smaller } \quad \text { the same as }
$$

A A high-mass star spends a amount of time as a main sequence star than a low-mass star spends as a main sequence star.

B The brightness of a high-mass star is than the brightness of a low-mass star.

02 Figure 2.1 shows a plan view of a ripple tank used to investigate the behaviour of waves.
Figure 2.1

02.1 The vibrating beam in the ripple tank produces waves which travel across the tank.

The beam makes 20 waves in 4 s
What is the frequency of the waves?
Tick one box.
20 Hz

5.0 Hz

80 Hz

02.2 The parallel lines on the ripple tank in Figure 2.1 represent lines of wave crests. What is the name given to the distance from one line of crests to the next line of crests? Tick one box.

02.3 The frequency of the waves on the ripple tank is changed to 3.0 Hz

The wavelength of the waves is measured at 4.0 cm
Calculate the speed of these ripple tank waves.
Use the following equation.

$$
\text { speed }=\text { frequency } \times \text { wavelength }
$$

Wave speed =
cm / s
02.4 A student investigates how the speed of a wave on water varies with the depth of the water in the tank.

Identify the independent variable and the dependent variable.
Independent variable:
Dependent variable:
02.5 Figure 2.2 is a sketch graph of the student's results.

Figure 2.2

Which two statements are correct conclusions to the data shown in Figure 2.2? Tick two boxes.

The wave travels faster in deeper water.
The wave travels slower in deeper water.
Wave speed increases steadily as the water gets deeper.
Wave speed is not directly proportional to depth of water.

03.1 Which two of these quantities have both magnitude and direction?

Tick two boxes.

03.2 Figure 3.1 represents the motion of a car on a straight road.

Figure 3.1

Use Figure 3.1 to give three conclusions about the car's journey.
1.
2.
3.
03.3 Use Figure 3.1 to determine the displacement of the car at 4 s

```
Distance =
m [1 mark]
```

03.4 Calculate the average speed of the car during the first 4 s of its motion.

Use the following equation.

$$
\text { average speed }=\frac{\text { distance }}{\text { time }}
$$

04.1 Complete the following sentences about magnets.

Use the terms from the box below.
an attractive force \quad a repulsive force \quad no force

The north pole of a magnet exerts on the south pole
of another magnet.
The north pole of a magnet exerts on a piece of magnetic material such as iron.

The north pole of a magnet exerts on the north pole of another magnet.

The south pole of a magnet exerts on the south pole of another magnet.
04.2 Which description of the magnetic force between two magnets is correct?

Tick one box.

A contact force	\square
A non-contact force	\square

04.3 Describe the differences between a permanent magnet and an induced magnet.
\qquad
\qquad
\qquad
04.4 Figure 4.1 shows two magnetic field lines in the space around a bar magnet.

Add an arrow to each of the field lines to show the direction of the magnetic field.
Figure 4.1

04.5 Write a set of instructions for plotting a magnetic field line around a bar magnet using a compass.

You may include a diagram as part of your answer.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
05.1 Which two statements represent Newton's first law of motion correctly?

Tick two boxes.
The resultant force on a stationary object is zero.

Acceleration is proportional to resultant force.

When two objects exert forces on each other, the forces are equal and opposite.

The resultant force on an object moving at a steady speed is zero.

05.2 Figure 5.1 shows a van travelling along a straight road.

The arrows represent the forces acting on the van.
Figure 5.1

Which arrow in Figure 5.1 represents the driving force created by the van's engine?
Tick one box.

A	B	C	D	E	F	G

05.3 Which two forces shown in Figure 5.1 represent friction between the tyres and the road? Tick two boxes.

A	B	C	D	E	F	G

05.4 The van in Figure 5.1 is travelling at a velocity of $10 \mathrm{~m} / \mathrm{s}$

The van now accelerates to a velocity of $14 \mathrm{~m} / \mathrm{s}$
It takes 2.5 s to reach a velocity of $14 \mathrm{~m} / \mathrm{s}$
Use the following equation to calculate the van's acceleration.

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time }}
$$

Give the correct unit with your answer.
\qquad
\qquad
Acceleration $=$
Unit:
05.6 The mass of the van is 4000 kg

Calculate the resultant force acting on the van while it is accelerating.
\qquad
05.5 Write down the equation that links resultant force, mass and acceleration.

```
Resultant force =
N [2 marks]
```

05.7 The driving force from the van's engine during the acceleration is 8000 N Calculate the total resistive force acting on the van during the acceleration.

Resistive force $=$
N [2 marks]
06.1 Explain what causes air to exert a force on a surface.
06.2 Write down the equation that links pressure to normal force and surface area.
06.3 Atmospheric pressure at sea level is 100000 Pa

The average surface area of an adult human is $1.8 \mathrm{~m}^{2}$
Calculate the force exerted by the atmosphere on the surface of an adult human.
\qquad

Force $=$
06.4 Figure 6.1 shows the variation of atmospheric pressure with height.

Figure 6.1

Write down a conclusion you can make from the graph.
\qquad
\qquad
06.5 A student suggests that atmospheric pressure halves when height above sea level doubles.

Use data from the graph in Figure 6.1 to show whether or not the student's suggestion is correct.
\qquad
\qquad
\square
\qquad
06.6 Explain why the pressure exerted by the atmosphere on a person is greatest at sea level.
07.1 Figure 7.1 shows 3 parallel rays of light incident on a convex lens.

Draw in the paths of the three rays after they pass through the lens.
Mark with the letter \mathbf{F} the position of the principal focus of the lens.
Figure 7.1

07.2 Define the term focal length.
\square
07.3 A convex lens is set up to produce an image of an illuminated object on a screen.

Figure 7.2 shows an incomplete ray diagram of the set-up.
O represents the object.
Figure 7.2

Complete the ray diagram to show the formation of the image on the right hand side of the lens.

Draw two rays from the object to do this.
Mark the image I.
07.4 A student uses the apparatus in Figure 7.3 to produce an image of a cross-wire on a screen. The position of the screen is adjusted to produce a clear, focused image.

Figure 7.3

Figure 7.4 shows the appearance of the image on the screen.
Figure 7.4

Describe how the student could measure the magnification produced by the lens. Include any additional apparatus that the student may need.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
07.5 The student wants to find out if the focal length of a convex lens affects its magnification. The student uses the apparatus shown in Figure 7.3 with three convex lenses in turn. Each lens has a different focal length.

During the experiment, she keeps the distance from the object to the lens fixed.
Table 7.1 shows her results.
Table 7.1

Focal length in $\mathbf{~ m m}$	Object height in $\mathbf{~ m m}$	Image height in $\mathbf{~ m m}$	Magnification
100	20	20	1.0
120	20	30	1.5
150	20	60	

Write the missing magnification value in the table.
Use the equation for magnification from the Physics Equation Sheet.
07.6 Give one conclusion that can be made from the data in Table 7.1
07.7 The student wants to learn more about the way that focal length affects the magnification.

Suggest improvements to the experiment and the analysis of the data that could achieve this.
\qquad
\qquad
\qquad
\qquad

08 Figure 8.1 is a plan view of a door.
Pulling the door handle causes the door to open by rotating about its hinges.
Figure 8.1

08.1 Explain why it is easier to open the door by pulling at position A rather than pulling at position B.
08.2 Write down the equation which links moment, force and distance.
08.3 The door handle is 75 cm from the hinge.

A person pulls with a force of 2.0 N on the door handle.
Calculate the size of the clockwise moment exerted on the door.
Give your answer in N m .
08.4 Figure 8.2 shows a stationary wheelbarrow.

A gardener is applying an upward force to the handle of the wheelbarrow.
This holds the back legs of the wheelbarrow just off the ground.
Figure 8.2

The front wheel of the wheelbarrow acts as a pivot.
Complete the following sentence.
Choose from a clockwise moment or an anticlockwise moment.

The total weight of the wheelbarrow and its load creates
08.5 The total weight of the wheelbarrow and its load is 200 N

Calculate the size of the moment due to the total weight.
Take the front wheel as the pivot.
Moment =

N m [2 marks]
08.6 Give the direction of the moment produced by the force exerted by the gardener.
08.7 Give the size of the moment produced by the gardener to keep the wheelbarrow balanced.

Take the front wheel as the pivot.

$$
\text { Moment }=\quad \mathrm{N} \mathrm{~m} \quad \text { [1 mark] }
$$

08.8 Calculate the upward force that the gardener must exert to keep the wheelbarrow balanced with its back legs just off the ground.

Give your answer to 2 significant figures.

Force $=$
N [3 marks]
09.1 A student is asked to use the apparatus in Figure 9.1 to obtain a series of measurements of the extension of a spring.

She has a range of standard weights to attach to the spring.
Figure 9.1

Write a set of instructions that the student could follow to obtain the measurements as accurately as possible.
\qquad
09.2 The student repeats the experiment for two more springs.

Data for the three springs, A, B and C, are displayed on the graph in Figure 9.2
Figure 9.2

Which one of the springs has been stretched beyond its limit of proportionality?
Tick one box.

A

B
C \square
09.3 Which is the stiffest spring?

Tick one box.
A \square
B \square
C \square
09.4 Which of the springs is the easiest to stretch?

Tick one box.
A

B

C

09.5 Which one of the springs requires a force of 4.0 N to extend it by 0.20 m ?

B

C $\quad \square$

Physics Equation Sheet

Equation Number	Word Equation	Symbol Equation
1	(final velocity) $^{2}-\left(\right.$ initial velocity) ${ }^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2$ a s
2	elastic potential energy $=0.5 \times$ spring constant $\times\left(\right.$ extension) ${ }^{2}$	$E_{e}=\frac{1}{2} \mathrm{ke}^{2}$
3	change in thermal energy $=$ mass \times specific heat capacity \times temperature change	$\Delta E=m \mathrm{c} \Delta \theta$
4	period $=\frac{1}{\text { frequency }}$	$E=m L$
5	magnification $=\frac{\text { image height }}{\text { object height }}$	
6	thermal energy for a change of state $=$ mass \times specific latent heat	$V_{p} I_{p}=V_{s} I_{s}$
7	potential difference across primary coil \times current in primary coil $=$ potential difference across secondary coil \times current in secondary coil	$p V=$ constant
8	For gases: pressure \times volume $=$ constant	

