Collins

AQA GCSE Chemistry

F

SET A – Paper 2 Foundation Tier

Author: Sunetra Berry

Materials

Time allowed: 1 hour 45 minutes

For this paper you must have:

- a ruler
- a calculator
- the Periodic Table (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering question 07.5 you need to make sure that your answer:
 - is clear, logical, sensibly structured
 - fully meets the requirements of the question
 - shows that each separate point or step supports the overall answer.

Advice

• In all calculations, show clearly how you work out your answer.

Name:

01.1 Which **one** of the following substances is pure?

Tick **one** box.

Air in a city	
Sea water near a factory	
Oxygen from a cylinder	
Chocolate milkshake	

[1 mark]

01.2 Which statement about pure substances is false?

Tick **one** box.

A pure substance can be an element or a compound.	
Formulations must be pure substances in order to be safe.	
Pure substances have specific melting points and boiling points.	
A mixture can be pure.	

[1 mark]

01.3 Identify the following substances as mixtures or formulations.

Write either M (for mixture) or F (for formulation) in each row in Table 1.1

Name of substance	Formulation or mixture
baby food	
rock salt and sand	
cough medicine	
sea water	

Table 1.1

[4 marks]

01.4 Which one of the following gases is not considered to be an atmospheric pollutant produced by the combustion of fuels?

Tick one box.

Sulfur dioxide		
Carbon monoxide		
Oxides of nitrogen		
Oxygen		
		[1 mark]
Name the two main greenho	use gases.	

01.5

Greenhouse gas 1.	
Greenhouse gas 2.	[2 marks]

02.1 Which list shows the first four members of the alkanes in the correct order?

Tick **one** box.

Ethene, propene, butane, pentene Methane, ethane, propane, butane Butane, ethane, methane, propane Butene, ethene, pentene, propene

[1 mark]

[1 mark]

02.2 Which statement about alkanes **and** alkenes is **true**?

Tick **one** box.

Alkanes and alkenes are both part of a homologous series. The general formula for alkanes is $C_n H_{2n}$ and for alkenes is $C_n H_{2n+2}$ Alkenes are saturated hydrocarbons and alkanes are unsaturated. Alkanes contain a double bond between C atoms and alkenes don't.

02.3 Tick two boxes that correctly complete the sentence below.

As the size of alkane and alkene molecules increases...

- ...they burn more readily and more completely.
- ...they can flow less easily and are harder to pour.
- ...the boiling point increases.
- ... the flammability increases.

[2	marks]
----	--------

4

02.4 Which of the following is an alkene?

02.5 Complete the following sentences about fractional distillation.

Use the correct words from the grid.

compound	melting	cool	mixture	boiling
melt	evaporate	freeze	condense	solidify
Crude oil is a		of hydroc	arbons.	
This means it can be separated into fractions.				
The fractions hav	ve different		points.	
Heating the crude oil causes the fractions to				
As they move up the fractionating column, theyand				

[5 marks]

FOR USE OF DIGITAL COPYRIGHT HOLDER ONLY

Turn over >

03.1 Which statement about the reactions of organic molecules is false?

Tick **one** box.

Alkanes and alkenes are both very reactive.

Ethanol and ethane burn to make carbon dioxide and water.

Hydrogen and halogens can be added to alkenes.

Ethanoic acid reacts with carbonates to make carbon dioxide.

03.2 What is the product when hydrogen reacts with propene?

Tick one box.	
Propanol	

Propanoic acid	
Propyl propanoate	
Propane	\square

[1 mark]

[1 mark]

03.3 Which two statements about cracking are true?

Tick **two** boxes.

Steam cracking takes place at a higher temperature than catalytic cracking. More alkenes are produced in steam cracking than catalytic cracking. More alkenes are produced in catalytic cracking than steam cracking.

Steam cracking and catalytic cracking require high operating pressures.

03.4 Describe the test that can show whether a substance is propane or propene.

Include the expected results for each substance.

Test	
Expected results	
	[2 marks]

03.5 Complete the symbol equation for the cracking of dodecane $(C_{12}H_{26})$.

 $C_{12}H_{26} \rightarrow C_{3}H_{6} + C_{4}H_{8} + C_{-}H_{-}$

[2 marks]

03.6 Ethanol can be manufactured by reacting steam (H_2O) with a hydrocarbon.

What is the name of the hydrocarbon?

[1 mark]

03.7 Ethanol can also be produced by fermentation of sugar solution.

Draw two lines from each process to the two conditions required to carry it out.

 Process
 Condition

 high temperature and pressure
 low temperature and pressure

 adding water to a hydrocarbon
 anaerobic

 addition of a metal catalyst
 addition of a metal catalyst

[2 marks]

04.1 Which **one** of the following statements about the factors affecting the rate of reaction is **true**?

Tick **one** box.

The rate of reaction is faster with a lower temperature. The rate of reaction is faster with a higher concentration. The rate of reaction is slower with a catalyst. The rate of reaction is faster with a lower pressure.

04.2 Which one of the following is not a unit for rate of reaction?

Tick **one** box.

g/s	
cm³/s	
kg/hr	
m/s	

[1 mark]

[1 mark]

magnesium + hydrochloric acid → magnesium chloride + hydrogen

The student used apparatus as shown in Figure 4.1

How could the mean rate of reaction of the complete reaction be measured most accurately?

Tick **one** box.

Measure the total volume of hydrogen in the gas syringe and divide by the time taken to make it.	
Measure the time taken for the bubbles of hydrogen to stop being made.	
Measure the time taken for the magnesium to completely react and dissolve.	
Measure the time taken for 10 cm ³ of hydrogen to be made, and divide by the time taken to make the 10 cm ³ of hydrogen.	
	[1 mark]

Question 4 continues on the next page

04.4 The rate of reaction was measured for different concentrations of acid.

Table 4.1 shows the results.

Time for the reaction to complete (s)	Concentration of acid (g/dm³)
120	0.5
100	1.0
50	1.5
25	2.0
18	2.5
15	3.0

Та	ble	41
10	DIC	- T - L -

On the grid below:

- Plot these results
- Draw a line of best fit
- Highlight any anomalous points

[3 marks]

04.5	The total volume of hydrogen produced in each reaction was 900 cm ³	
	Calculate the rate of reaction at the highest concentration in Table 4.1	
	Use the equation:	
	mean rate of reaction = $\frac{\text{total volume of hydrogen made (cm³)}}{\text{time taken (s)}}$	
	Mean rate of reaction = cm ³ /s	[2 marks]
04.6	Describe how the rate of reaction changes with concentration.	
	Use the data in Table 4.1 and/or your graph.	
		[1 mark]
04.7	Explain why the rate changes with increasing concentration.	
	Use your knowledge of particles and collisions.	
		[2 marks]

05.1 Draw one line from each gas to the test used to identify it.

05.2 An unknown metal salt was added to sodium hydroxide solution.

A blue precipitate was observed.

The unknown metal salt produced a green flame.

Name the metal ion in the unknown metal salt.

Include its charge.

[1 mark]

05.3 The unknown metal salt is a sulfate.

Describe a suitable test to show whether sulfate ions are present.

Include the expected result if sulfate ions are present.

Test	
Expected result	[2 marks]

	Test and result			
Salt	Flame test	Add acidified barium chloride	Add acidified silver nitrate	Add sodium hydroxide solution
Α	crimson flame	no change	cream precipitate	no result
В	unclear	white precipitate	no result	brown precipitate

Table 5	.1
---------	----

Analyse and interpret the results to identify the cations (metal ions) and anions (non-metal ions) in each salt.

Cation in salt A	
Anion in salt A	
Cation in salt B	
Anion in salt B	[4 marks]

05.5 Give three reasons why **instrumental** methods of chemical detection are preferred to **chemical** methods.

05.6 Flame emission spectroscopy can be used to analyse metal ions in solution.

Figure 5.1 shows the results from a flame emission analysis of different elements.

Figure 5.1

An unknown salt was analysed using flame emission spectroscopy.

The result for the salt is shown in Figure 5.2

Figure 5.2

Compare Figure 5.1 and Figure 5.2

What conclusion can you draw?

Explain your answer.

[2 marks]

Table 6.1 shows the composition of gases in the early atmosphere and the composition of gases in the atmosphere today.

Name of gas	Composition in early atmosphere (%)	Composition in atmosphere today (%)
carbon dioxide	98	0.04
oxygen	0	20
nitrogen	0	80
ammonia	small amounts	none
methane	small amounts	small amounts
water	variable	variable

Table 6.1

06.1 Describe **three** differences between the gases in the early atmosphere and the gases in the atmosphere today.

Question 6 continues on the next page

		[2 marks]
06.4	Describe two of the effects of the recent increase in average global temperature.	
		[2 marks]
	Write a balanced symbol equation for this process.	[2]
06.3	Oxygen in the atmosphere is produced by only one process.	
		[4 marks]
	Explain why each of them has caused the change.	
	Describe two different processes that account for these changes.	
06.2	Carbon dioxide levels have changed between the early atmosphere and the present atmosphere.	

06.5 Describe **four** possible actions that could be taken to reduce the emissions of greenhouse gases.

Explain why each of these actions would lead to a reduction.

[4 marks]

Turn over >

				[1 mark]

07.2 Two rivers, A and B, were considered as possible sources of drinking water.

Water samples from both rivers were analysed to test if they were potable.

The data from both rivers are given in **Table 7.1**, alongside data for recommended safe drinking water quality.

		Maximum recommended level	River A	River B		
	hardness	1500 mg/l	1000 mg/l	3000 mg/l		
c	chloride	500	12 800	500		
lon concentration (mg/l)	sulfate	1000	1	1		
	iron	50	20	30		
	magnesium	200	150	150		
	sodium	500	3000	500		
P	nitrate	50	20	20		
	pH value	6.0–8.5	5.5	7.0		

Which of the two rivers would be most appropriate to use as a source for potential potable water?

Give three reasons for your answer.

Use the data in Table 7.1

River

Reasons

[4 marks]

07.3 What are the **two** water treatment processes used to treat water from **all** potential water sources?

07.4 Explain why ozone may be added to produce potable water.

[2 marks]

Question 7 continues on the next page

07.5 Potable water can be produced either from seawater or from groundwater.

Compare the similarities and differences in the processes involved to obtain potable water from each of these sources.

[6 marks]

nitrogen + hydrogen \rightleftharpoons ammonia

08.1 What does the \rightleftharpoons sign mean?

		-			
08.2	If the reaction is exothermic in the forward direction, what can you say about the reverse direction?				
		[1	1 m	ark	(]

08.3 Describe the conditions used industrially for the reaction above.

[3 marks]

08.4 NPK fertilisers are produced from different raw materials.

Name the **two** substances that are needed to make **ammonium phosphate** using a neutralisation reaction.

[2 marks]

[1 mark]

08.5 NPK fertilisers are formulations of various salts containing appropriate percentages of the elements.

The salts contain three important elements.

State the names of these elements.

[2 marks]

08.6 Phosphate rock contains calcium phosphate.

When treated with nitric acid the products are a weak acid and a salt of a strong acid.

The weak acid is reacted with ammonium hydroxide to produce ammonium phosphate, a soluble salt that is used as a fertiliser.

Write two word equations to show these two reactions which lead to the production of ammonium phosphate.

END OF QUESTIONS

BLANK PAGE

The Periodic Table

0 0 0 8 helium 2	20 80 Ar	argon 18	K 84	krypton 36	131 Xe	xenon 54	[222]	radon 86	[294] Uuo	ununoctium 118
~	19 19 35.5	chlorine 17	B .00	35 35	127 	iodine 53	[210] At	astatine 85	[294] Uus	ununseptium 117
Q	16 000 8 32 8 8 8	sulfur 16	79 Se	selenium 34	128 Te	tellurium 52	[209]	polonium 84	[293] Lv	livermorium 116
сı	14 7 31 31	15 15	75 As	arsenic 33	122 Sb	antimony 51	209 Bi	bismuth 83	[289] Uup	ununpentium 115
4	12 6 0 82 82 82	silicon 14	73 Ge	germanium 32	119 Sn	50	207	lead 82	[289] F I	flerovium 114
ო	11 5 AI	aluminium 13	70 Ga	gailium 31	115 n	indium 49	204 1	thallium 81	[286] Uut	ununtrium 113
			0 5 7	30 SINC	112 Cd	cadmium 48	201 Ho	mercury 80	[285] Cn	copernicium 112
			63.5 Cu	29 Copper	108 Ag	silver 47	197	gold 79	[272] Ra	roentgenium
			20 N		106 Pd	palladium 46	195 9	platinum 78	[271] Ds	darmstadtium 110
hydrogen	-		00 00	27 27	103 Rh	rhodium 45	192 Ir	iridium 77	[268] Mt	meitnerium 109
			L 0		101 Ru	ruthenium 44	190 0	osmium 76	[277] Hs	hassium 108
Relative atomic mass Atomic symbol	Atomic/proton number		ນ Mn 2	manganese 25	[98] Tc		186 Be	rhenium 75		
Relative atomic Atomic symbol Name ———	Atomic/pr		22 Č 2	cnromium 24	90 Mo	molybdenum 42	184 W	tungsten 74	[266] Sa	seaborgium 106
etals			ری	vanadium 23	03 N p	niobium 41	181 A	tantalum 73		
Non-m			4 8	22	91 Zr	zirconium 40	178 Hf	hafnium 72	[261] Bf	rutherfordium 104
			45 Sc	21	°8 ≻	yttrium 39	130	lanthanum 57	[227] Ac *	actinium 89
р	9 beryllium 4 Z4 Ma	magnesium 12	40 Ca	calcium 20	88 88 80	strontium 38	137 Ra	barium 56	[226] Ra	radium 88
-	7 Itthium 3 23 2 3			potassium	85 Rb	rubidium 37	133 Ce	caesium 55	[223] Fr	francium 87

*The lanthanides (atomic numbers 58–71) and the actinides (atomic numbers 90–103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Key