Collins

AQA

GCSE

Chemistry

SET A – Paper 1 Foundation Tier

Author: Sunetra Berry

Materials

Time allowed: 1 hour 45 minutes

For this paper you must have:

- a ruler
- a calculator
- the Periodic Table (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 02.2 and 06.3 you need to make sure that your answer:
 - is clear, logical, sensibly structured
 - fully meets the requirements of the question
 - shows that each separate point or step supports the overall answer.

Advice

In all calculations, show clearly how you work out your answer.

Name:		

01	This	question is about the Periodic Table.	
	01.1	Which of the statements below is true ?	
		Tick one box.	
		Columns in the Periodic Table are known as periods.	
		Rows in the Periodic Table are known as groups.	
		The top right corner contains non-metals only.	
		The first column contains transition metals only.	
			[1 mark]
	01.2	Complete the sentence below.	
		Tick one box.	
		Noble gases are unreactive because they	
		are covalently bonded molecules	
		have low melting points	
		are gases at room temperature	
		have a full outer shell of electrons	
			[1 mark]
	01.3	Which of the statements below are true ?	
		Tick two boxes.	
		Group 7 elements have seven electrons in the outer most shell.	
		Group 7 elements have very high melting and boiling points.	
		Group 7 elements conduct electricity as liquids and gases.	
		Group 7 elements form both ionic compounds and covalent molecules.	
			[2 marks]

01.4	Describe how the reactivity of Group 1 elements changes as you look down the g the Periodic Table.	roup in
		[1 mark]
01.5	Describe how the reactivity of Group 7 elements changes as you look down the g the Periodic Table.	roup in
		[1 mark]
01.6	Describe how the boiling points of Group 0 elements change as you look down the in the Periodic Table.	ne group
		[1 mark]
01.7	Give two ways in which the physical properties of transition metals differ from Group 1 metals.	
	1.	
	2.	[2 marks]

Magı	nesium oxide reacts with sulfuric acid to make a salt.			
02.1 What is the name of the salt that is formed?				
		[1 n		
02.2	Describe a method to make magnesium sulfate from insoluble magnesium oxide sulfuric acid.	and		
		[6 m		
02.3	Magnesium also reacts with sulfuric acid to make the same salt.			
	What would you expect to see when magnesium reacts with sulfuric acid?			
		[1 n		

02.4	Some students wanted to measure the temperature change in the reaction between magnesium and sulfuric acid.	n:
	Which of the following methods might provide them with the data they need?	
	Tick one box.	
	Measure the initial volume of gas and final volume of gas, using a gas syringe.	
	Measure the initial mass and the final mass, using a balance.	
	Measure the initial and maximum temperature of the sulfuric acid, using a thermometer.	
	Measure the initial acidity of the sulfuric acid, using an indicator and a pH scale.	
		[1 mark]

02.5 The students repeated the method using a range of other metals.

In each case, the temperature increased, though not by the same amount.

Table 2.1 shows the students' results.

Table 2.1

Metal	Temperature change (°C)
zinc	9
copper	3
magnesium	50
iron	5

Use the results to write the metals in order of reactivity, from most to least	se the results to s	write the met	als in orde	r of reactivity.	from mos	t to l	east reactive.
--	---------------------	---------------	-------------	------------------	----------	--------	----------------

1.	
2.	
3.	

4.

03	This	question is about nanoparticles .	
	03.1	Which of the following statements about nanostructures are true?	
		Tick one box.	
		Nanoparticles have a low surface area to volume ratio.	
		Nanoparticles have a diameter less than 2500 nm.	
		Nanoparticles have a diameter larger than 2500 nm.	
		Nanoparticles have a diameter less than 1 nm.	
			[1 mark]
	03.2	Which of the following is not likely to be a potential application of nanoparticles?	
		Tick one box.	
		New deodorants	
		New catalysts	
		New computers	
		New jewellery	
			[1 mark]

03.4

03.3 Draw one line from each substance to its structure.

Substance	Structure
buckminsterfullerene	
diamond	
	•
graphite	
graphene	
	[3 marks]
Which two of the following statemen	nts apply to all the structures in question 03.3?
Tick two boxes.	
The atoms are joined by ionic bonds.	
They are made from carbon atoms or	nly.
The atoms are joined by covalent bor	nds.
They conduct electricity.	
	[2 marks]

Question 3 continues on the next page

03.5	Write down three properties that are shown by both ionic compounds and metals	5.
	1.	
	2.	
	3.	[3 marks]
03.6	State three similarities and two differences between graphite and diamond in tentheir bonding and structures.	rms of
		[5 marks]

04

um oxide is formed when sodium metal reacts with oxygen.	
Write a word equation for the reaction.	
	[1 mark]
What type of reaction is this?	
Reduction	
Oxidation	
Neutralisation	
Displacement	[1 mark]
Describe how the mass of sodium changes during the reaction.	[1 mark]
Oxygen atoms accept electrons and form oxide ions.	
Explain why the formula of sodium oxide is Na ₂ O	
	[4 marks]
	What type of reaction is this? Reduction Oxidation Neutralisation Displacement Describe how the mass of sodium changes during the reaction. Sodium atoms transfer electrons and form sodium ions. Oxygen atoms accept electrons and form oxide ions. Explain why the formula of sodium oxide is Na ₂ O

Question 4 continues on the next page

04.5	Complete the balanced symbol equation for the reaction.	
	$Na + O_2 \rightarrow Na_2O$	
		[1 mark]
04.6	Manufacturers calculate that theoretically they might obtain 62.0 tonnes of sodium from 46.0 tonnes of sodium.	m oxide
	They actually obtain 55.0 tonnes of sodium oxide.	
	Calculate the percentage yield.	
	Percentage yield =%	[1 mark]
04.7	The percentage atom economy of a reaction is calculated using the balanced equation for the reaction as follows:	
	Relative formula mass of desired product from equation Sum of relative formula mass of all reactants from equation × 100	
	What is the atom economy for the reaction to make sodium oxide?	
	Give a reason for your answer.	
	Percentage atom economy:	
	Reason:	
		[2 marks]

04.8	Sodium oxide can also be made by the thermal decomposition of sodium carbon	ate.
	The other product is carbon dioxide.	
	Write a balanced symbol equation for this reaction.	
		[1 mark]
04.9	How would you expect the mass of the solid sodium carbonate to have changed reaction is complete?	after this
		[1 mark]
04.10	How is the atom economy different in this reaction compared to the reaction in	04.5?
	Explain your answer.	
		-
		[2 marks]

A student wanted to find out if reactions were exothermic or endothermic. 05

They carried out four different reactions and measured the temperature changes.

They repeated each reaction three times.

Table 5.1 shows the results.

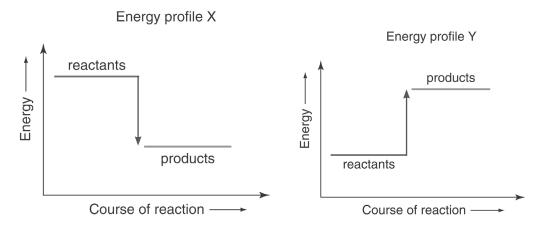
Table 5.1

Reaction	Tempe	erature change (°C)		Moon townsystims shangs (95)
Reaction	Exp 1	Exp 2	Exp 3	Mean temperature change (°C)
А	5	10	11	
В	-5	-6	-6	
С	25	19	26	
D	-10	-12	-11	

05.1 Calculate the mean temperature change for each reaction, to 3 significant figures.

Omit any anomalous results.

Add your answers to Table 5.1

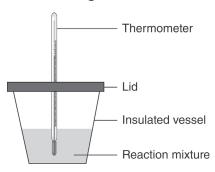

[4 marks]

	- · · · · · · · · · · · · · · · · · · ·
05.2	Are the anomalous results caused by random or systematic error?
	Explain your answer.

05.3	Give three conclusions about the four reactions that you can draw from this data.	
		[3 mark

05.4 Match each of the four reactions, A, B, C and D, to one of the energy profiles in Figure 5.1

Figure 5.1


Reaction	Energy profile (X or Y)
А	
В	
С	
D	

06.1	What are the names of the products formed?	
		[1 mai
06.2	The concentration of potassium hydroxide needs to be 10 g/dm³	
00.2		25 3
	Calculate the amount of potassium hydroxide that needs to be dissolved to make of solution.	25 cm ³
	Amount of potassium hydroxide =g	[2 mar
06.3	Describe how to carry out the titration.	
	Include any chemicals and equipment needed.	

07 Some students investigated the temperature during the neutralisation of sodium hydroxide and hydrochloric acid.

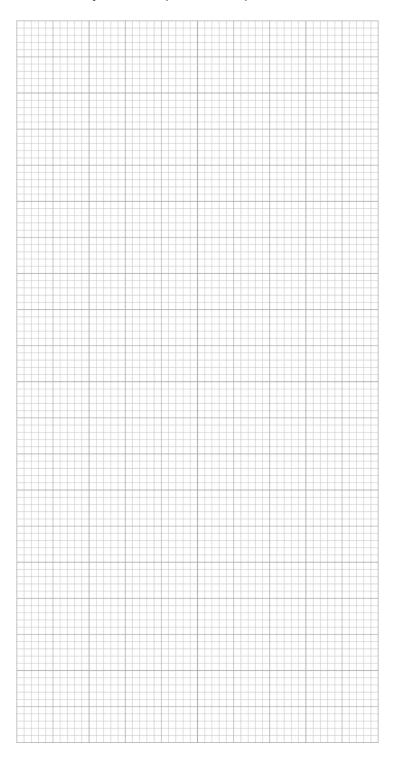
The students used the apparatus in Figure 7.1 to collect the data.

Figure 7.1

The students carried out eight experiments. In each experiment, they added a volume of 2 mol/dm³ sodium hydroxide to a fixed volume and concentration of hydrochloric acid.

The volumes of 2 mol/dm³ sodium hydroxide added and the temperatures recorded are shown in **Table 7.1**

Table 7.1


Volume of NaOH (cm³)	Temperature (°C)
5	25.80
10	26.40
15	27.00
20	27.60
25	27.40
30	27.20
35	27.00
40	26.80

07.1 Name a suitable material to make the insulating material and the lid in Figure 7.1

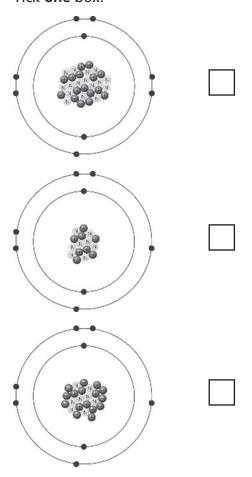
[1 mark]

Question 7 continues on the next page

07.2 Using a suitable scale on your axes, plot all the points from Table 7.1 on the grid below.

[4 marks]

	Volume of sodium hydroxide (cm³)	pH range
07.6	Draw one line from each volume of sodium hydroxide addexpected pH range.	ded to the acid to the acid's
07.5	Add state symbols to complete the equation for this react $H^+() + OH^-() \rightarrow H_2O()$	ion. [1 mark]
		[1 mark]
	What is the volume of sodium hydroxide at the point of n	eutralisation?
07.4	The point of neutralisation occurs at the highest tempera	
		[2 marks]
07.3	Draw two straight lines of best fit on the graph to show has the volume increases.	now the temperature changes


Volume of sodium hydroxide (cm³)	pH range
	0–2
10	2–4
25	4–6
40	6–8
15	8–10
	10–12

[4 marks]

08.1 Which diagram represents the correct atomic structure for oxygin	08.1	Vhich diagram	represents the	correct atomic	structure for	oxvaen?
--	------	---------------	----------------	----------------	---------------	---------

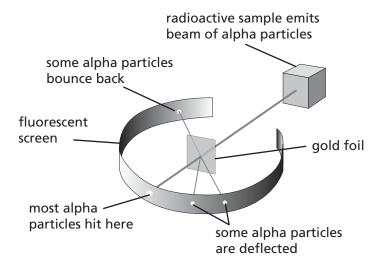
¹⁶₈O

Tick one box.

[1 mark]

08.2 Draw the electronic structure of the **oxide ion**.

08.3	3.3 Which statement about the sizes of the atoms and the nucleus is true?					
	Tick one box.					
	The radius of an atom is about 10 nm					
	The radius of a nucleus is about 10 nm					
	The radius of an atom is about 0.1 nm					
	The radius of a nucleus is about 0.1 nm					
		[1 mark]				
08.4	Which two statements about isotopes are true?					
	Tick two boxes.					
	Isotopes have the same physical properties.					
	Isotopes contain the same number of protons.					
	Isotopes contain the same number of neutrons.					
	Isotopes contain the same number of electrons.					
		[2 marks]				
08.5	Oxygen has three isotopes:					
	¹⁶ ₈ O ¹⁷ ₈ O ¹⁸ ₈ O					
	Describe the similarities and differences between the three isotopes of oxygen.					
		[2 marks]				


Question 8 continues on the next page

08.6 Table **8.1** shows the percentage of each isotope in a sample of oxygen.

Table 8.1

Percentage	Isotope			
70	¹⁶ O			
25	¹⁷ ₈ O			
5	¹⁸ O			

Calculate the relative atomic mass of oxygen in the sample. Give your answer to 4 significant figures. [3 marks] O9 Scientists used to think that atoms were like 'plum puddings'. An experiment using positively charged alpha particles and gold foil changed scientists' ideas.

- 1. Scientists thought the alpha particles would pass straight through the gold foil.
- 2. Alpha particles were fired at a sheet of gold foil.
- 3. Some alpha particles did go straight through the gold foil; others were deflected.
- Which two statements about Rutherford's experiment provided evidence for the nuclear model of the atom?
 Tick two boxes.
 The beam produced is deflected by an electric field.
 Alpha particles were fired at a thin piece of gold foil.
 A high voltage was applied to produce a beam.
 Flashes of light were observed when particles hit a screen.
 Describe the evidence collected through this experiment.
 Explain how the evidence led to new conclusions about the structure of the atom.

END OF QUESTIONS

[4 marks]

BLANK PAGE

BLANK PAGE

0 or 8 He helium 2	20 neon 10	40 Ar argon	18	krypton 36	13.1 ×enon 54	[222] Rn radon 86	Uuo ununoctium 118
7	19 fluorine	35.5 chlorine	17	Br bromine	127 - iodine 53	[210] At astatine 85	Uus Uus ununseptium 117
9	16 0xygen 8	32 sulfur	16	Selenium 34	128 Te tellurium	Po polonium 84	[293] Lv Iivermorium 116
ស	14 Nuitrogen	31 Phosphorus	15	AS arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	Uup ununpentium 115
4	12 carbon 6	28 silicon	73	Ge germanium 32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	207 Pb lead 82	[289] FI flerovium
ო	11 boron 5 5 5 A aluminium		13	Ga gallium 31	115 indium 49	204 thallium 81	[286] Uut ununtrium 113
					112 Cd cadmium 48	201 Hg mercury 80	Cn copernicium 112
			63.5	copper 29	108 Silver 47	197 Au gold 79	[272] Rg roentgenium
		26	nickel 8	106 pd palladium	195 Platinum 78	Ds darmstadtium	
- T drogen	rydrogen -	26	Cobalt 27	103 rhodium 45	192 	[268] Mt meitnerium 109	
			26	iron 2	DC ruthenium 44	190 Os osmium 76	Hs hassium 108
omic mass	Metals Non-metals Relative atomic mass - Atomic symbol - Name	55	Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107	
Relative at Atomic syı Name ——		52	chromium 24	Mo molybdenum 42	184 W tungsten 74	Sg seaborgium 106	
etals						[262] Db dubnium 105	
			48	titanium	91 zirconium 40	178 # hafnium 72	[261] Rf rutherfordium 104
Key			45	Scandium 21	× yttrium (39	139 La* Ianthanum 57	[227] Ac* actinium 89
2	9 Be beryllium	24 Mg magnesium	40	Cal	88 strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 L.i lithium 3	23 Sodium	39	potassium 19	85 rubidium 37	133 caesium 55	[223] Fr francium 87

*The lanthanides (atomic numbers 58-71) and the actinides (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.