Collins

AQA

 GCSE
Chemistry

SET A - Paper 1 Foundation Tier

Author: Sunetra Berry

For this paper you must have:

- a ruler
- a calculator
- the Periodic Table (found at the end of the paper).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 02.2 and 06.3 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Name:

This question is about the Periodic Table.
01.1 Which of the statements below is true?

Tick one box.
Columns in the Periodic Table are known as periods.
Rows in the Periodic Table are known as groups.
The top right corner contains non-metals only.
The first column contains transition metals only.
01.2 Complete the sentence below.

Tick one box.
Noble gases are unreactive because they...
are covalently bonded molecules
have low melting points
are gases at room temperature
have a full outer shell of electrons
01.3 Which of the statements below are true?

Tick two boxes.
Group 7 elements have seven electrons in the outer most shell.

Group 7 elements have very high melting and boiling points.

Group 7 elements conduct electricity as liquids and gases.
Group 7 elements form both ionic compounds and covalent molecules.

01.4 Describe how the reactivity of Group 1 elements changes as you look down the group in the Periodic Table.
01.5 Describe how the reactivity of Group 7 elements changes as you look down the group in the Periodic Table.
\qquad [1 mark]
01.6 Describe how the boiling points of Group 0 elements change as you look down the group in the Periodic Table.
\qquad
01.7 Give two ways in which the physical properties of transition metals differ from Group 1 metals.
1.
2.

02 Magnesium oxide reacts with sulfuric acid to make a salt.
02.1 What is the name of the salt that is formed?
02.2 Describe a method to make magnesium sulfate from insoluble magnesium oxide and sulfuric acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\square
02.3 Magnesium also reacts with sulfuric acid to make the same salt. What would you expect to see when magnesium reacts with sulfuric acid?
02.4 Some students wanted to measure the temperature change in the reaction between magnesium and sulfuric acid.

Which of the following methods might provide them with the data they need?
Tick one box.
Measure the initial volume of gas and final volume of gas, using a gas syringe.
Measure the initial mass and the final mass, using a balance.
Measure the initial and maximum temperature of the sulfuric acid, using a thermometer.

Measure the initial acidity of the sulfuric acid, using an indicator and a pH scale.
02.5 The students repeated the method using a range of other metals.

In each case, the temperature increased, though not by the same amount.
Table 2.1 shows the students' results.
Table 2.1

Metal	Temperature change $\left({ }^{\circ} \mathrm{C}\right)$
zinc	9
copper	3
magnesium	50
iron	5

Use the results to write the metals in order of reactivity, from most to least reactive.
1.
2.
3.
4.

03 This question is about nanoparticles.
03.1 Which of the following statements about nanostructures are true?

Tick one box.
Nanoparticles have a low surface area to volume ratio.
Nanoparticles have a diameter less than 2500 nm .
Nanoparticles have a diameter larger than 2500 nm .
Nanoparticles have a diameter less than 1 nm .
03.2 Which of the following is not likely to be a potential application of nanoparticles?

Tick one box.

New deodorants	\square
New catalysts	\square
New computers	\square
New jewellery	\square

03.3 Draw one line from each substance to its structure.

Substance
\square
\square

Structure

03.4 Which two of the following statements apply to all the structures in question 03.3?

Tick two boxes.
The atoms are joined by ionic bonds.

They are made from carbon atoms only. \square
The atoms are joined by covalent bonds.

They conduct electricity.

03.5 Write down three properties that are shown by both ionic compounds and metals.
1.
2.
3.
03.6 State three similarities and two differences between graphite and diamond in terms of their bonding and structures.

04 Sodium oxide is formed when sodium metal reacts with oxygen.
04.1 Write a word equation for the reaction.

04.2 What type of reaction is this?

Reduction	\square
Oxidation	\square
Neutralisation	\square
Displacement	\square

04.3 Describe how the mass of sodium changes during the reaction.
04.4 Sodium atoms transfer electrons and form sodium ions.

Oxygen atoms accept electrons and form oxide ions.
Explain why the formula of sodium oxide is $\mathrm{Na}_{2} \mathrm{O}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
04.5 Complete the balanced symbol equation for the reaction.

$$
\mathrm{Na}+\mathrm{O}_{2} \rightarrow \quad \mathrm{Na}_{2} \mathrm{O}
$$

04.6 Manufacturers calculate that theoretically they might obtain 62.0 tonnes of sodium oxide from 46.0 tonnes of sodium.

They actually obtain 55.0 tonnes of sodium oxide.
Calculate the percentage yield.

Percentage yield $=$ \% [1 mark]
04.7 The percentage atom economy of a reaction is calculated using the balanced equation for the reaction as follows:

$$
\frac{\text { Relative formula mass of desired product from equation }}{\text { Sum of relative formula mass of all reactants from equation }} \times 100
$$

What is the atom economy for the reaction to make sodium oxide?
Give a reason for your answer.
Percentage atom economy:
Reason:
04.8 Sodium oxide can also be made by the thermal decomposition of sodium carbonate. The other product is carbon dioxide.

Write a balanced symbol equation for this reaction.
\qquad
04.9 How would you expect the mass of the solid sodium carbonate to have changed after this reaction is complete?
04.10 How is the atom economy different in this reaction compared to the reaction in 04.5 ? Explain your answer.
\qquad

05 A student wanted to find out if reactions were exothermic or endothermic.
They carried out four different reactions and measured the temperature changes.
They repeated each reaction three times.
Table 5.1 shows the results.
Table 5.1

Reaction	Temperature change $\left({ }^{\circ} \mathrm{C}\right)$			Mean temperature change $\left({ }^{\circ} \mathrm{C}\right)$
	Exp 1	Exp 2	Exp 3	
A	5	10	11	
B	-5	-6	-6	
C	25	19	26	
D	-10	-12	-11	

05.1 Calculate the mean temperature change for each reaction, to 3 significant figures.

Omit any anomalous results.
Add your answers to Table 5.1
05.2 Are the anomalous results caused by random or systematic error? Explain your answer.
\qquad
\qquad
\qquad
\qquad
05.3 Give three conclusions about the four reactions that you can draw from this data.

\qquad
05.4 Match each of the four reactions, A, B, C and D, to one of the energy profiles in Figure 5.1

Figure 5.1

Reaction	Energy profile (X or Y)
A	
B	
C	
D	

06 A student carries out a titration between $25 \mathrm{~cm}^{3}$ potassium hydroxide and nitric acid.
06.1 What are the names of the products formed?
06.2 The concentration of potassium hydroxide needs to be $10 \mathrm{~g} / \mathrm{dm}^{3}$

Calculate the amount of potassium hydroxide that needs to be dissolved to make $25 \mathrm{~cm}^{3}$ of solution.
\qquad
\qquad
Amount of potassium hydroxide $=$
g [2 marks]
06.3 Describe how to carry out the titration.

Include any chemicals and equipment needed.
\qquad

07 Some students investigated the temperature during the neutralisation of sodium hydroxide and hydrochloric acid.

The students used the apparatus in Figure 7.1 to collect the data.
Figure 7.1

The students carried out eight experiments. In each experiment, they added a volume of $2 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide to a fixed volume and concentration of hydrochloric acid.

The volumes of $2 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide added and the temperatures recorded are shown in Table 7.1

Table 7.1

Volume of $\mathrm{NaOH}\left(\mathrm{cm}^{3}\right)$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
5	25.80
10	26.40
15	27.00
20	27.60
25	27.40
30	27.20
35	27.00
40	26.80

07.1 Name a suitable material to make the insulating material and the lid in Figure 7.1
07.2 Using a suitable scale on your axes, plot all the points from Table 7.1 on the grid below.

07.3 Draw two straight lines of best fit on the graph to show how the temperature changes as the volume increases.
07.4 The point of neutralisation occurs at the highest temperature rise.

What is the volume of sodium hydroxide at the point of neutralisation?
\qquad
07.5 Add state symbols to complete the equation for this reaction.
$\mathrm{H}^{+}(\quad)+\mathrm{OH}^{-}(\quad) \rightarrow \mathrm{H}_{2} \mathrm{O}(\quad)$
07.6 Draw one line from each volume of sodium hydroxide added to the acid to the acid's expected pH range.

Volume of sodium hydroxide (cm^{3})

pH range

\square
\square
\square

10-12
08.1 Which diagram represents the correct atomic structure for oxygen?
${ }_{8}^{16} \mathrm{O}$
Tick one box.

08.2 Draw the electronic structure of the oxide ion.
\square
08.3 Which statement about the sizes of the atoms and the nucleus is true?

Tick one box.
The radius of an atom is about 10 nm
The radius of a nucleus is about 10 nm
The radius of an atom is about 0.1 nm

The radius of a nucleus is about 0.1 nm
08.4 Which two statements about isotopes are true?

Tick two boxes.
Isotopes have the same physical properties.

Isotopes contain the same number of protons.

Isotopes contain the same number of neutrons.

Isotopes contain the same number of electrons.
[2 marks]
08.5 Oxygen has three isotopes:

$$
\begin{array}{lll}
{ }_{8}^{16} \mathrm{O} & { }_{8}^{17} \mathrm{O} & { }_{8}^{18} \mathrm{O}
\end{array}
$$

Describe the similarities and differences between the three isotopes of oxygen.
\qquad
\qquad
\qquad
\qquad
08.6 Table 8.1 shows the percentage of each isotope in a sample of oxygen.

Table 8.1

Percentage	Isotope
70	${ }_{8}^{16} \mathrm{O}$
25	${ }_{8}^{17} \mathrm{O}$
5	${ }_{8}^{18} \mathrm{O}$

Calculate the relative atomic mass of oxygen in the sample.
Give your answer to 4 significant figures.

09 Scientists used to think that atoms were like 'plum puddings'. An experiment using positively charged alpha particles and gold foil changed scientists' ideas.

1. Scientists thought the alpha particles would pass straight through the gold foil.
2. Alpha particles were fired at a sheet of gold foil.
3. Some alpha particles did go straight through the gold foil; others were deflected.
09.1 Which two statements about Rutherford's experiment provided evidence for the nuclear model of the atom?

Tick two boxes.
The beam produced is deflected by an electric field. \square
Alpha particles were fired at a thin piece of gold foil.
A high voltage was applied to produce a beam.

Flashes of light were observed when particles hit a screen.

09.2 Describe the evidence collected through this experiment.

Explain how the evidence led to new conclusions about the structure of the atom.
\qquad
 4

\qquad

\qquad

BLANK PAGE

BLANK PAGE

$\begin{aligned} & \infty \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	\checkmark 오 愹 \sim					N	
	N		$\stackrel{\sim}{\sim}$			$\frac{\mathrm{C}}{\mathrm{~N}}+\stackrel{.}{4}$	
	\bullet	$\bigcirc \bigcirc$	लの标				
	\bigcirc	$\stackrel{\square}{\square} \stackrel{\text { oid }}{\substack{\text { ¢ }}}$				－ $\mathrm{N}_{\text {¢ }}^{\text {¢ }}$	
	＊				$\frac{\circ}{\Gamma} \text { に }$	숫으ㅁㅠㅡㅇㅇ	
	\cdots	m\％		ค			
				${ }^{\circ} \mathrm{C}$			
						がブロロ	
	－エ 驚－			O）${ }^{\circ}$		$\stackrel{\sim}{\circ}$ 으늘츨	
	$11 \mid 1$			¢언융N			
					0	¢ $<$ ¢	
					$Q_{i}^{\circ} \sum_{i}^{2}$		
$\frac{\infty}{\frac{\infty}{0}}$							$\underset{\sim}{2}$
$\begin{array}{ll} \frac{\infty}{\widetilde{N}} & \underline{1} \\ \stackrel{0}{0} & \vdots \\ \sum & \vdots \end{array}$							
				¢ ¢ ¢ ¢	－＞¢ ¢		
	N						
	τ		Nて【				

＊The lanthanides（atomic numbers 58－71）and the actinides（atomic numbers 90－103）have been omitted．
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number．

