

# Stretch lesson: Finding equations of straight lines

| Stretch objectives                                                                             |             |                     |
|------------------------------------------------------------------------------------------------|-------------|---------------------|
| Before you start this chapter, mark how confident you feel about each of the statements below: | <b>&gt;</b> | <b>&gt;&gt;&gt;</b> |
| I can find the equation of a line through one point with a given gradient.                     |             |                     |
| I can find the equation of a line through two given points.                                    |             |                     |

### Check-in questions

- Complete these questions to assess how much you remember about each topic. Then mark your work using the answers at the end of the lesson.
- If you score well on all sections, you can go straight to the Revision Checklist and Exam-style Questions at the end of the lesson. If you don't score well, go to the lesson section indicated and work through the examples and practice questions there.

A line has gradient 3 and goes through the point (4, -1). Find the equation of this line.

Go to 9.1

# 9.1 Finding the equations of straight lines

You need to be able to find the equations of lines from key information. Remember the equation of a straight line is in the form y = mx + c.

Example **Q** Find the equation of a line with gradient –3 that passes through the point (–2, 10).

**A** Substitute the gradient (m = -3) and the given point (x = -2, y = 10) into the equation y = mx + c.

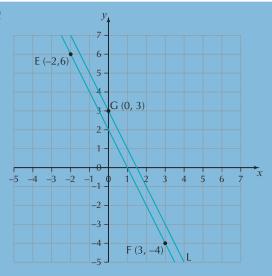
 $10 = (-3 \times -2) + c$ 

10 = 6 + c

So the equation of the line is y = -3x + 4.

2

**A** Substitute the gradient (m = 4) and the coordinates  $(x = \frac{1}{2}, y = 5)$  into the equation y = mx + c.


$$5 = \left(4 \times \frac{1}{2}\right) + c$$

$$5 = 2 + c$$

$$c = 3$$

So the equation of the line is y = 4x + 3.

Example **Q** 3



The diagram shows three points: E(-2, 6) F(3, -4) G(0, 3)

Line L is parallel to EF and passes through G.

- a Find the equation of line L.
- **b** Write down the equation of a line that passes through the point G and is not parallel to L.

**A** a Gradient of 
$$L = gradient$$
 of  $EF$ 

$$= \frac{\text{change in } y}{\text{change in } x}$$

$$= \frac{(6 - -4)}{(-2 - 3)}$$

$$= \frac{10}{-5}$$

$$= -2$$

Passes through G so *y*-intercept is (0, 3).

Equation of L is y = -2x + 3.

**b** Equation of line is y = kx + 3, where k is any value except -2.

Exam tips

Take care to substitute coordinates carefully into the equation.

### **Practice questions**

- 1 Find the equation of the line with gradient 4 which passes through (0, 7).
- 2 Find the equation of the line with gradient –1 which passes through (1, 4).
- Find the equation of the line which passes through (0, 6) and (10, 8).
- The line  $L_1$  passes through (2, 4) and (9, 1). The line  $L_2$  is parallel to  $L_1$  but passes through (0, 2). Find the equation of  $L_2$ .
- The line  $L_1$  passes through (0, 7) and (10, 6). The line  $L_2$  is parallel to  $L_1$  but passes through (0, 4). Find the equation of  $L_2$ .

## Exam-style questions

- 1 Work out the equation of the line which passes through (2, 4) and has a *y*-intercept of 2.
- 2 Kai has drawn a line which passes through (0, 10) and (10, 5). Alexandra has drawn a line which passes through (4, 8) and (8, 6). Kai says they have drawn segments of the same line. Is he correct? Show your working.
- The line  $L_1$  passes through (1, 5) and (5, 7). The line  $L_2$  has the same gradient but passes through (8, 2). Find the equation of  $L_2$ .

# Chapter 9 Stretch lesson: Answers

### Check-in questions

1 y = 3x - 13

### 9.1 Finding the equations of straight lines

- 1 y = 4x + 7
- 2 y = -x + 5
- 3 y = 0.2x + 6
- 4  $y = -\frac{3}{7}x + 2$
- 5 y = -0.1x + 4

### Exam-style questions

- 1 y = x + 2
- 2 The equation of Kai's line is y = -0.5x + 10.

Substituting the coordinates (4, 8) on Alexandra's line segment into the equation of Kai's line gives  $8 = -0.5 \times 4 + 10$ , 8 = -2 + 10, 8 = 8.

Substituting the coordinates (8, 6) on Alexandra's line segment into the equation of Kai's line gives  $6 = -0.5 \times 8 + 10$ , 6 = -4 + 10, 6 = 6. So the two lines are the same.

3 y = 0.5x - 2