Guidance o	Guidance on the use of codes for this mark scheme						
М	Method mark						
А	Accuracy mark						
В	Working mark						
С	Communication mark						
Р	Proof, process or justification mark						
cao	Correct answer only						
oe	Or equivalent						
ft	Follow through						

Question	Working	Answer	Mark	AO	Notes	Grade
1 ai ii iii iv		No Yes Yes No	B1 B1 B1 B1	2		В
bi		Assume third angle is 90°. $180^{\circ} - 90^{\circ} =$ 90°. So both the remaining angles must be acute. If the third angle is bigger than 90° both remaining must also be acute. If the third angle is acute you would need to make one of the other angles at least 90°.	C1 C1		C1 for full explanation C1 for clarity of explanation	
ii		Example with 2 acute angles.	B1		B1 for giving an example that works	
iii		Example with 1 obtuse angle.	B1		B1 for giving an example that works	
iv		The obtuse angles will be $(90^\circ + x)$ and $(90^\circ + y)$, adding these together you get $180^\circ + x + y$, which is more than the sum of the angles in a triangle, so it's impossible.	C1 C1		C1 for a correct explanation C1 for clear communication	
С		If you draw a line between two parallel lines, the two allied angles formed add up to 180°, which leaves nothing for a third angle.	C1 C1 12		C1 for clear explanation C1 for clarity of the communication	

2	Sometimes. Here are examples, one of when it is not true and on of when it is true. 5 cm A 2 cm 6 cm B 2 cm 8 cm C 1 cm Shape A: perimeter of 14 cm area 10 cm ² Shape B; perimeter of 16 cm area 12 cm ² Shape C; perimeter of 18 cm area 8 cm ² Statement is true for A and B, but false for B and C.	B1 B2 C1	2	B1 for sometimes B1 for example that shows it can be true B1 for example that shown it can be false C1 for clear communication of both	В
3	True. Demonstration of proof of area triangle equal to half area of rectangle true also for non-right angled triangle. $E_{A \ mathbf{mathcharge}} = \frac{1}{2} \text{ of AEBT}$ $= \frac{1}{2} \text{ of 36 cm}^2 = 18 \text{ cm}^2$ Area of CTB = $\frac{1}{2}$ of CTBF $= \frac{1}{2} \text{ of 12 cm}^2 = 6 \text{ cm}^2$ Area of triangle ABC = 18 + 6 = 24 \text{ cm}^2 $= \frac{1}{2} \times 4 \times 12$ $= \frac{1}{2} \times 4 \times 12$	B1 C1 C1	23	B1 for true C1 for clear explanation C1 for concise communication with clear diagrams	В

4	A rotation of 90° anticlockwise around point (2, 2).		P1 A1 C1	3	P1 for a process of finding the centre of rotation A1 for indicating 90° anticlockwise (or 270°clockwise) A1 for indicating centre of rotation as (2, 2) C1 for full, clear description	В
5	Area of front and back =		4 M1	2	M1 for correct formula for area of rectangle	В
5	$2 \times 12 \times 25 = 600 \text{ m}^2$			3		В
	Area of sides = $2 \times 12 \times 12 = 288 \text{ m}^2$ Area of openings = $40 \times 2 \times 1 = 80 \text{ m}^2$		M1		M1 for correct method of finding total surface area	
	Total area to be painted = $600 + 288 - 80$ = 808 m^2 For 2 coats of paint, area = 2×808 = 1616 m^2 Number of litres of paint needed = $1616 \div 16$ = 101 litres Number of cans of paint = $101 \div 10 = 10.1$ 11 cans are needed. Cost of paint = $11 \times \pounds 25 = \pounds 275$ Assume painters work 5 days per week. Number of days = $2 \times 5 = 10$ Cost of painters = $10 \times 3 \times 120 = \pounds 3600$ Total cost = $\pounds 275 + \pounds 3600 + \pounds 500 = \pounds 4375$ Add $10\%: \pounds 4375 \times 1.1 = \pounds 4812.50$ Add 20% VAT: \pounds 4812.50 $\times 1.2 = \pounds 5775$	The builder should charge the council £5775.	A1 B1 M1 A1 M1 A1 A1 A1 A1 A1 M1 A1 C2 16		A1 for 808 cao M1 for correct method of finding number of tins A1 for correct number of tins used M1 for method of finding cost of tins A1 for 275 cao M1 for method of calculating cost for two days A1 for 3600 cao A1 for 4375 cao M1 for correct calculation of 10% M1 for correct calculation of 10% A1 for correct total cost £5775 C1 for clear explanation marks with structure and technical use of language in explanation and C1 for stating any necessary assumptions	

6 a	Area of face = 4^2 = 16 m ² Area of circle = πr^2 Using π = 3.142 area of circle = $\pi 1.2^2$ = 4.524 48 m ² Remaining SA of front face = 16 - 4.524 48 = 11.475 52 m ² Total remaining surface area: front and back = 2 × 11.47552 = 22.95104 m ² Area of other four sides = 4 × 16 = 64 m ² Total = 64 + 22.951 04 = 86.951 04 m ²	87.0 m ²	M1 M1 A1 A1 A1 A1 A1 A1	3	 M1 for the correct method of finding area of a rectangle M1 for correct method of finding area of a circle A1 for correct area of circle A1 for correct area of face with circle. A1 for correctly combining front and back A1 for correct area of the other 4 sides A1 for correct total area, rounded to 2,3 or 4 sf 	В
b	Volume of original cuboid = $4^3 = 64 \text{ m}^3$ Volume of cylinder = $\pi r^2 h$ = $\pi r^2 4$ = $4.524 \ 48 \times 4$ = $18.097 \ 92 \text{ m}^3$ Remaining volume = $64 - 18.097 \ 92$ = $45.902 \ 08 \text{ m}^3$	45.9m ³	M1 A1 M1 A1 A1		M1 for correct method for finding volume of cube A1 for 64 M1 for correct method for finding volume of cylinder A1 for a correct volume of cylinder (any rounding) A1 for correct total volume, rounded to 2,3 or 4 sf	
C	Amount of light blue paint = outside area \div coverage of 1 litre of paint = $87 \div 9 = 9.666$ Surface area inside cylinder = $2\pi rh$ = $2 \times 3.142 \times 1.2 \times 4$ = $30.1632 \div 9 = 3.3515$	Amount of light blue = 9.7 litres Amount of dark blue = 3.4 litres	M1 A1 M1 A1 A1 17		M1 for dividing total outside surface by 9 A1 for correct answer rounded to 1,2,3 or 4sf M1 for correct method of finding curved surface area A1 for a correct surface area (any rounding) A1 for correct answer to 2,3 or 4 sf	
7		Yes, he is correct. This is one of the conditions for being able to draw a triangle (SAS).	C1 1	3	C1 for clear communication that he is correct	М
8		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B4 4	3	B1 for each different possible triangle shown and clearly labelled	М
9	A 5 cm 5 cm B	The locus is none of these as it is a point, so d.	B1 C1 C1 3	3	B1 for stating d is the only correct option C1 for a clear explanation of why C1 for clear communication, using diagrams to illustrate answer	М

10 a	Angles in a triangle add up to 180°.		C1	2	C1 for clear explanation	М
	You can split any quadrilateral into two		C1		C1 for communication with clear diagram	
	triangles.					
	Therefore, the sum of the interior angles of any quadrilateral = $2 \times 180^{\circ}$.					
	x $i = 108^{\circ}$		B1			
					B1 for showing inter angles of quadrilateral = 2×180	
b			04			
	$\delta = 108^{\circ}$		C1		C1 for a clear diagram correctly showing the three triangles	
	y		C1		C1 for identifying each angle of the triangles with	
	x y				symbols showing which angles are equal	
	For the two outside triangles, use the sum of		C1		C1 for clear explanation	
	the angles in triangle = 180° and the interior		M1		M1 for correct method of finding angle x	
	angle of a regular pentagon = 108° .				5 5	
	$108^{\circ} + 2x = 180^{\circ}$ $2x = 180^{\circ} - 108^{\circ}$					
	$2x = 72^{\circ}$					
	$x = 36^{\circ}$		A1		A1 for 36°	
	For the middle triangle, use interior angle of		M1		M1 for correct method of finding angle y	
	regular pentagon = 108° . y = $108^{\circ} - x$					
	$y = 108^{\circ} - 36^{\circ}$					
	$y = 72^{\circ}$		A1		A1 for 72°	
	Using the sum of angles in triangle = 180° : z = 180 - 2y					
	z = 180 - 2y z = 180 - 144		M1		M1 for correct method of finding angle <i>z</i>	
	$z = 36^{\circ}$		A1		A1 for 36°	
	Or $2x + z = 108^{\circ}$ x = 36°					
	$x = 36^{\circ}$ so 2 × 36° + z = 108°	Two triangles with one angle = 108°	C1		C1 for clear argument and stating assumptions used	
	$z + 72^{\circ} = 108^{\circ}$	and two other equal angles of 36°.	C1		C1 for use of diagram with clarity of explanation	
	<i>z</i> = 36°	One triangle with one angle = 36° and two angles = 72° .	2.			
			14			

11		A line of symmetry has the same number of vertices on each side of the line, so there is an even number of vertices and therefore an even number	C2 C1	2	C1 for line of symmetry and number of vertices link C1 for reference to even number of vertices oe C1 for use of diagram to illustrate the answer	М
		of sides.	3			
12 a		Suitable diagram, e.g.	B1	2 3	B1 for a correct diagram	М
b		Suitable diagram, e.g. as part a	B1		B1 for a correct diagram	
с		In a parallelogram opposite sides are equal. In a trapezium at least one set of opposite sides are parallel. Therefore every parallelogram is also a trapezium.	B1 C1		B1 for a correct diagram of a parallelogram C1 for a correct explanation to support the diagram	
13		Always true. To follow a path around the perimeter of any polygon, you must turn through a total of 360° to get back to where you started. Therefore the external angles of every polygon sum to 360°.	B1 C1 P1 3	2	B1 for always true C1 for a satisfactory explanation P1 for use of diagram to illustrate answer	М
14	Ratio = $6:5:7$ 6+5+7=18 Sum of the angles in a triangle = 180° and $180^{\circ} \div 18 = 10^{\circ}$ Therefore the angles are: $6 \times 10^{\circ} = 60^{\circ}$ $5 \times 10^{\circ} = 50^{\circ}$ $7 \times 10^{\circ} = 50^{\circ}$		M1 C1 M1	2	M1 for summing parts of ratio C1 for clear statement regarding angle sum of triangle M1 for dividing 180° by 18	М
	7 x 10° = 70° Check: 60 + 50 + 70 = 180	60°, 50°, 70°	B3 P1 7		B1 for each correct angle found P1 for showing the check that the answers sum to 180°	

15	Assume the height of one large triangle is	25 cm ²	C1	2	C1 for stating assumptions clearly	М
	equal to the radius of the large circle, 6 cm,	20 0111	0.	-		
	and its base is equal to the diameter of the					
	small circle, 3 cm.					
	6 - 1.5 = 4.5 cm					
	1.5 cm					
	Consider one shaded triangle.					
	Its height is $(6 - 1.5) = 4.5$ cm		B1		B1 for correct triangle height	
	The shaded triangle and the large triangle shown are similar triangles, where		M1		M1 for a consible way to estimate triangle base length	
	U		IVI I		M1 for a sensible way to estimate triangle base length	
	$\frac{\text{base of shaded triangle}}{3} = \frac{4.5}{6}$		A1		A1 for an accurate calculation at this point	
	Hence shaded base = $3 \times \frac{4.5}{6} = 2.25$					
	The area of one shaded triangle will be					
	$2ro2 = \frac{1}{2} \times 2.5 \times 4.5 = 5.0625 \text{ cm}^2$					
	area = $\frac{1}{2}$ × 2.5 × 4.5 = 5.0625 cm ² .		M1		M1 for correct method of finding area of triangle	
	As an estimate, call this 5 cm^2 .		A1		A1 for an suitably estimated area (1 or 2 sf)	
	So a reasonable estimate for the area of the					
	five shaded triangles could be:		M1		M1 for multiplying one area by 5	
	$5 \times 5 = 25 \text{ cm}^2$		A1		A1 for correct final estimation (integer value)	
			C1		C1 for clear explanation supporting the working	
			P1		P1 for clear diagrams illustrating the approach	
			10			

16 a b	The interior angle of an equilateral triangle is 60° .The interior angle of a square is 90° The interior angle of a regular hexago is 60° .All three are factors of 360° so these 	gon C1 t. C1 not C1 P1 on	2	C1 for clear explanation of all three shapes C1 for use of clear diagrams to support the explanation C1 for clear explanation. C1 for clear explanation P1 for use of clear diagrams to support the explanation	Μ
		8			
17	All three sides (SSS). Two sides and the included angle (SAS). Two sides and a non-included angle (SSA). Two angles and a side (ASA or AAS		3	B1 for each correct statement	М

18 a	True. In a parallelogram opposite sides are parallel. In a rhombus, opposite sides are parallel and all sides are the same length. So a rhombus is a type of parallelogram. In a square all sides are the same length. So a rhombus with right angles must be a square.	B1 C1 C1	3	B1 for true C1 for clear explanation C1 for clear explanation	М
b	True. A rhombus must be a parallelogram (part a) but a parallelogram does not all sides the same length so it does not have to be a rhombus.	B1 C1		B1 for true C1 for clear explanation	
C	$\alpha = 90^{\circ}$	P1		P1 for clear use of diagrams to support explanation	
	True. Using the diagram of a trapezium above, you see each pair of angles between the parallel sides are allied angles, adding up to 180°, so each pair can only have a maximum of one acute angle, hence the whole shape can have no more than two acute angles.	B1 C1 P1		B1 for true C1 for clear explanation P1 for clear use of diagrams to support the explanation	
d	True. A quadrilateral can have three acute angles, e.g. 80° , 80° , 80° and 120°.	B1 B1 M1		B1 for true B1 for clear explanation supported by a clear diagram M1 for clear use of a correct diagram: a diagram is essential	
		12			

19	Look at the sides and/or angles you	C1	3	C1 for clear Pythagoras explanation	М
	have been given and what you need to calculate. When the triangle has a right angle, use Pythagoras' theorem when you need to work out one side length and you know the other two side lengths.	C1	C	C1 for clear right angled trig explanation	
	Otherwise, when the triangle does not have a right angle, use sine, cosine or tangent when you need to work out an angle or a side.				
	Use the cosine rule to find angles when all sides of any triangle are known or to find the third side when two sides and the included angle are known.	C1		C1 for clear cosine rule explanation	
	Use the sine rule when two sides and one angle other than the included angle are known, or two angles and one side	C1		C1 for clear sine rule explanation	
	are known.	4			
20 ai	A suitable simple reflection.	B1	2	B1 for a diagram of a simple reflection	М
ii	A suitable reflection with a mirror line that is parallel to one of the sides of the shape.	C1	č	C1 for a clear explanation	
bi	A suitable simple rotation.	B1		B1 for a diagram of a simple rotation	
ï	A suitable rotation with centre not on an extension of one of the sides of the shape.	C1		C1 for a clear explanation	
		4			

21 a		The lengths of the sides change by the scale factor. Angles in the shape stay the same.	C2	2 3	C1 for correct statement about the lengths C1 for correct statement about the angles	М
b		The scale factor and centre of enlargement.	B2		B1 for scale factor B1 for centre of enlargement	
с		Suitable explanation of enlargements with use of diagram to help explanation. For example: Draw lines connecting corresponding vertices on the shape and its enlargement. The centre of enlargement is where these lines cross.	C1		C1 for a clear explanation	
		enalgements where these these these closs.	C1		C1 for a good accurate diagram to support the explanation	
di	Diagram to help explanation:	Centre of enlargement outside the shape: the shape will move up and down a line that passes through the shape. Centre inside the original shape: the enlargement is either inside or around the shape depending on whether the scale factor is whole or fractional.	C2 P1		C1 for correct explanation of centre outside the shape C1 for correct explanation of centre within the shape P1 for clear diagrams used in both explanations	
		When the centre is on a vertex the shape and enlargement share part of two sides. When the centre is on a side, the shape and enlargement shape part of the side. The image is smaller than the object.	C1		C1 for clear explanation.	
ii	The image is smaller than the object.		C1		C1 for clear explanation.	

22 a		When a shape has been translated the orientation is the same. When it has been reflected its	C2	2	C1 for comment about orientation staying the same in translation C1 for comment about orientation being different in	М
		orientation is different.	P1		rotation P1 for a clear diagram to support the explanation	
b		Rotating a rectangle about its centre: all the vertices move and the image is superimposed over the object.	C1 P1		C1 for clear explanation P1 for good diagram to support explanation	
		Rotating the rectangle about one of its vertices: all the other vertices move and, as the angle increases, the image is no longer superimposed over the object.	C1		C1 for clear explanation	
			P1		P1 for use of diagram to illustrate explanation	
23	Cross-sectional area is a quarter of circle	· · ·	7	2		M
	with radius 1.5 cm and a rectangle 1.5 cm by 6.5 cm.		M1	3	M1 for method of finding area of the quadrant	
	area of quarter circle= $\frac{1}{4}\pi 1.5^2$		A1 B1		A1 for any rounding to 4 or more sf B1 for 9.75	
	= $1.767 \ 145 \ 9 \ cm^2$ Area of rectangle $1.5 \times 6.5 = 9.75 \ cm^2$ Total area = $1.767 \ 145 \ 9 + 9.75$		B1		B1 for any rounding to 4 or more sf	
	= $11.517 \ 146 \ cm^2$ Total volume of wood is $11.517 \ 146 \ x \ 12 \ 000 = 138 \ 205.75 \ cm^2$. Convert this to m ² by dividing by 1 000 000.	138 000 cm ² or 0.14 m ²	M1 A1		M1 for method of finding volume A1 for correct answer rounded to either 2 or 3 sf Accept alternative answer in cubic metres given correctly to 2 or 3 sf	
	Total volume = 0.138 205 75 m ²	0.1411	6			

24	A		3		М
	Area of the sector = $\frac{\theta}{360}\pi r^2$	B1		B1 for correct formula of area of sector	
	Area of segment = area of sector – area of triangle = $\frac{\theta}{360} \pi r^2 - \frac{1}{2} ab \sin \theta$ As <i>a</i> and <i>b</i> are both equal to <i>r</i> , this becomes: $\frac{\theta}{360} \pi r^2 - \frac{1}{2} r^2 \sin \theta$ Factorising gives:	B1 M1 M1		B1 for correct formula of area of triangleM1 for correctly stating the combined equation for segment areaM1 for correct use of <i>r</i> in triangle formula	
	$r^{2}(\frac{\theta}{360}\pi - \frac{1}{2}\sin\theta)$ as required.	M1 A1 C1		M1 for factorising A1 for correct factorisation C1 for clear use of diagram to support explanation	
		7			

25				2		М
	6					
	5 10 C					
	Using trigonometry:					
	$\cos \alpha = \frac{5}{6}$					
	$\alpha = \cos^{-1}\frac{5}{6}$		M1		M1 for correct trigonometric statement for angle	
	α = 33.557 31°		A1		A1 for any rounded answer to 2 or more sf	
	Area of segment of one circle					
	$=\frac{\theta}{360}\pi r^2 - \frac{1}{2}r^2\sin\theta$		M1		M1 for correct segment formula	
	$= r^2 (\frac{\theta}{360} \pi - \frac{1}{2} \sin \theta)$		M1		M1 for correct factorisation	
	where $\theta = 2 \times 33.6^\circ = 67.2^\circ$ and $r = 6$ cm.					
	Area = $6^2 (\frac{67.2}{360} \pi - \frac{1}{2} \sin 67.2^\circ)$		A1		A1 for correct substitution of radius and a correct angle	
	$= 36(0.586\ 431 - \frac{1}{2}\sin 67.2^{\circ})$					
	= 36(0.586 431 – 0.460 931 6)					
	$= 4.517 979 \text{ cm}^2$		A1		A1 for correct answer to 2 or more sf	
	Area of overlap = 2×4.517979 cm ²		M1		M1 for multiplying by 2	
	$= 9.035 959 \text{ cm}^2$	9.0 cm ²	A1 C1		A1 for correct answer to either 1 or 2 sf	
					C1 for use of mathematical language and diagrams to support solution	
			9			

26 a		14 faces: the same as the number of polygons in the net.	B1 C1	2	B1 for the 14 faces C1 for clear explanation	М
b	Triangle 11 will move round to sit next to face 13, square 4 will move round to be next to face 12, leaving face 2 opposite to face 13.	13	B1		B1 for face 13	
c		I would create the shape first then draw what I see from above as the plan and from the side as the elevation. Once I have created the shape, I can measure the lengths and angles concerned.	C1 P1 C2		C1 for clear explanation P1 for use of diagrams to support the explanation C1 for an explanation of the plan C1 for explanation of elevation	
27	Circumference of wheel = πD		7 M1	2	M1 for method of calculating circumference of wheel	М
	$= \pi \times 68$ = 213.6283 cm		A1		A1 for full unrounded answer	
	10 km = 10 × 1000 × 100 cm = 1 000 000 cm		B1		B1 for use of 1 000 000 as a conversion factor either way round	
	Number of revolutions in 10 km = 1 000 000 cm ÷ 213.6283 cm = 4681.028	4681 complete rotations	M1 A1		M1 for correct division with common units A1 for cao	
			5			
28	B 3 km C 5 km x		C1 C1	2	C1 for use of a correct diagram C1 for explanation of how and why using Pythagoras	M
	A $x^{2} = 5^{2} + 3^{2}$ $x^{2} = 34$		M1 M1		M1 for correct application of Pythagoras' theorem M1 for correct method of finding hypotenuse	
	$x = \sqrt{34}$ = 5.830 951 9	<i>x</i> = 5.8 km	A1 5		A1 for correct rounding to 2 or 3 sf	

	1			_		
29	53°		C1	2	C1 for clear correct diagram used	Μ
	62° Chimney					
	28° 37°					
	$30 \times x$					
	Let c = the height of the chimney.		M1		M1 for correct use of trigonometry with x , c and angle 53° or 37°	
	$\frac{x}{c} = \tan 53^{\circ}$		A1		A1 for correct equation having <i>x</i> as subject	
	$x = c \tan 53^{\circ}$					
	$\frac{(30+x)}{x} = \tan 62^{\circ}$					
	C		M1		M1 for correct use of trigonometry with x , c and angle	
	$30 + x = c \tan 62^{\circ}$ x = c tan 62° - 30		A1		62° or 28° A1 for correct equation in format to combine with	
					equation 1	
	Combining equations 1 and 2 to eliminate <i>x</i> :				M4 for compative limit stire	
	$c \tan 53^\circ = c \tan 62^\circ - 30$ Rearrange to get c on one side of the		M1		M1 for correctly eliminating x	
	equation.					
	$30 = c \tan 62^\circ - c \tan 53^\circ$					
	$30 = c(\tan 62^\circ - \tan 53^\circ)$ 30					
	$c = \overline{(\tan 62^\circ - \tan 53^\circ)}$		M1		M1 for correct equation with c as subject	
	= 54.182 761 m	54.2 m	A1		A1 for correct rounding to 2 or 3 sf	
			8			

30	$\begin{array}{c} 30^{\circ} \\ A \\ 330^{\circ} \\ \\ x \\ 120^{\circ} \\ A \\ 15 \end{array} \\ \begin{array}{c} 20^{\circ} \\ B \\ 290^{\circ} \\ \\ B \\ \end{array}$		C2	2	C1 for diagram illustrating how angles found at A and B C1 for complete triangle drawn, showing all relevant data	М
	Angle at A is 90° + (360° - 330°) = 120° Angle at B is 290° - 270° = 20° Angle at S is 180° - (120° + 20°) = 40° Use the sine rule. $\frac{x}{\sin 20°} = \frac{15}{\sin 40°}$ $x = 15 \times \frac{\sin 20°}{\sin 40°}$		B1 B1 B1 M1		B1 for 120° B1 for 20° B1 for 40° M1 for use of sine rule	
	sin40° = 7.981 33	8.0 km	A1 7		A1 for correct answer rounded to 1, 2 or 3 sf	
31 a		Sometimes true.	C1	2	C1 for sometimes true	М
b		It is not true if the number of individual cubes has fewer than 3 factors, including 1 and itself, for example, you cannot do it with 7 cubes (factors 1 and 7) You can only make one cuboid if the number of factors, including 1 is equal	C1 C1		C1 for clear explanation for when not true C1 for clear explanation for when only 1 cuboid could be made	
с		to 3, for example, with 21 cubes (factors 1, 3 and 7). You can make more than one cuboid if the number of cubes has more than 3 factors not including itself, for example, 30 (factors 1, 2, 3 and 5).	C1 C1		C1 for clear explanation for when more than 1 cuboid could be made C1 for use of examples to illustrate the explanations	
		30 (factors 1, 2, 3 and 5).	5			

32 a		Yes.	B1 P1	2	B1 for yes P1 for a clear diagram or explanation	М
Ь		Yes.	B1 P1		B1 for yes P1 for a clear diagram or explanation	
С		Yes.	B1 P1		B1 for yes P1 for a clear diagram or explanation	
d		Yes.	B1 P1		B1 for yes P1 for a clear diagram or explanation	
33	Assume the cuboid has dimensions x, y and t. The surface area = $2(xy + xt + yt)$ Volume = xyt Doubling the lengths gives dimensions as $2x$, 2y and $2t$. So surface area = $2(2x \times 2y + 2x \times 2t + 2y \times 2t)$ = $2(4xy + 4xt + 4yt)$ = $8(xy + xt + yt)$ which is 4 times the first area. and $V = 2x \times 2y \times 2t$ = $8xyt$	False.	B1 C1 C1 P1 C1 B1 C1	2	 B1 for false C1 for surface area with either specific lengths or a generalisation C1 for volume with either specific lengths or a generalisation P1 for showing correct follow through of double the lengths C1 for a correct statement of SA with their data B1 for 4 times area C1 for a correct statement of volume with their data 	М
	which is 8 times the first volume.		B1 8		B1 for 8 times volume	

34			C1	2	C1 for clear diagram	М
	<i>x</i> 10					
	22.5					
	Consider just half the shape, where x is the					
	length of the string.					
	Use Pythagoras' theorem. $x^2 = 10^2 + 22.5^2$		M1		M1 for correct Pythagoras statement	
	$x^{-} = 10^{-} + 22.5^{-}$ = 606.25		M1		M1 for correct method of applying Pythagoras' theorem	
	$x = \sqrt{606.25}$					
	= 24.622 145		A1		A1 for full answer	
	Two lengths of string will be 49.244 289 cm		A1		A1 for double the initial x	
	Subtract the original 45 cm Gives extension as 4.244 289	4.2 cm	A1		A1 for rounded answer to either 2 or 3 sf	
			6			
35	Let $AC = x$, the length of the new road.		C1	2	C1 for use of a diagram to assist the explanation	М
	Use Pythagoras' theorem. $x^2 = 4.9^2 + 6.3^2$		M1		M1 for clear statement of Pythagoras	
	= 63.7		M1		M1 for correctly applying Pythagoras' theorem	
	$x = \sqrt{63.7}$ = 7.981 228		A1		A1 for full answer	
	Current distance = $4.9 + 6.3 = 11.2$ km		B1		B1 for 11.2	
	Saving = 11.2 – 7.981 228		M1		M1 for subtracting lengths	
	= 3.218 772 km	3.22 km	A1		A1 for correct rounding to 2 or 3 sf	
			7			
36		Yes. $\theta = \sin^{-1} \frac{12}{15} = 53.13^{\circ}$	B1	2	B1 for yes	М
		= 53° to the nearest degree = 50° to 1 sf	P1		P1 for showing that using trigonometry and rounding	
		12 cm has range of 11.5 to 12.5 cm	D 4		can give 50°	
		15 cm has range of 14.5 to 15.5 cm	P1		P1 for showing the ranges of lengths of the sides	
		The smallest value for sin θ is $\frac{11.5}{15.5}$				
		which gives $\theta = \sin^{-1} 0.7419$ $\theta = 47.9^{\circ}$				
		So there are values that round to 12 cm	B1		B1 for showing the least possible value of the angle	
		and 15 cm which will give an angle that	C1		given the ranges	
		rounds to 50°.	5		C1 for final summary explaining that it is possible	

37		Use Pythagoras' theorem. $AC^2 = 4^2 - (2\sqrt{2})^2$ = 16 - 8 = 8 $BC^2 = 8 = (2\sqrt{2})^2$ = 8 Hence BC = AC, an isosceles triangle.	M1 A1 M1 A1 C1 5	2	M1 for correct Pythagoras statement A1 for correct value of AC ² M1 for finding BC ² A1 for correct value of BC ² C1 for clear explanation of sides being the same length	М
38	$AB^{2} = 2^{2} - 1^{2}$ = 4 - 1 = 3 $AB = \sqrt{3}$	√3 cm	M1 A1 C1 3	2	M1 for correct Pythagoras statement A1 for 3 C1 for a clear communication of the method used	М
39	cos 68° = -cos 112° = -cos 248° = 0.3746 cos 338° = 0.9271	cos 338° is the odd one out. All the others have the same numerical value (ignoring signs).	B1 C1 2	2	B1 for cos 338° C1 for a clear explanation	М
40 a i	sin x + 1 = 2 sin x = 1 $x = sin^{-1}1 = 90^{\circ}$	<i>x</i> = 90°	M1 A1	2	M1 for sin $x = 1$ A1 for 90°	М
ii	2 + 3cos x = 1 3cos x = 1 - 2 = -1 $cos x = -\frac{1}{3}$ x = 109.5° and 360° - 109.5° = 250.5°	<i>x</i> = 109.5°, 250.5°	M1 A1 A1 A1 M1		M1 for first step of solving equation A1 for correct statement of $\cos x$ A1 for correct angle to 1 dp A1 for correct angle to 1dp M1 for method of getting to \sin^{-1}	
	$\cos 320^\circ = 0.766\ 044\ 4$ $\sin^{-1} 0.766\ 044\ 4 = 50^\circ$ and $180^\circ - 50^\circ = 130^\circ$	<i>x</i> = 50° and 130°	A1 A1 9		A1 for 50° A1 for 130°	

41 a	$\tan x = \sin x \div \cos x$		C1	2	C1 for communicating effectively how the sine and cos	М
b	$\frac{\sqrt{8}}{4} \div \frac{3}{\sqrt{18}}$ $= \frac{\sqrt{8}}{4} \div \frac{\sqrt{18}}{3}$ $= \frac{\sqrt{144}}{12}$ $= \frac{12}{12} = 1$ $\tan^{-1} 1 = 45^{\circ}$ Alternatively, use Pythagoras' theorem to	tan <i>x</i> = 1	M1 A1 A1	2	can be used to find tan (This could be $\tan x = \frac{\sin x}{\cos x}$) M1 for correct use of tan A1 for correct combination of surds A1 for tan $x = 1$	IVI
	work out the length of the third side, e.g. (side) ² = 16 - 8 = 8 side = $\sqrt{8}$ tan $x = \frac{\sqrt{8}}{\sqrt{8}} = 1$ tan ⁻¹ 1 = 45°	45°	M1 A1 6		M1 for use of inverse tan or recognising an isosceles triangle A1 for 45°	
42		Using Pythagoras' theorem, the hypotenuse = $\sqrt{6+10} = \sqrt{16} = 4$ Then sin $x = \frac{\sqrt{6}}{4}$ and cos $x = \frac{\sqrt{10}}{4}$	M1 A1 B1 B1	2	 M1 for correct Pythagoras statement A1 for 4 B1 for correct sin <i>x</i> B1 for correct cos <i>x</i> 	Μ
		Hence $(\sin x)^2 + (\cos x)^2 = \frac{6}{16} + \frac{10}{16} = \frac{16}{16} = 1$	C1 5		C1 for correct explanation	

43	A 3 <i>c</i>		C1	2	C1 for clear use of diagram	М
	$C \qquad 60^{\circ} \qquad B$ Use the cosine rule. $c^{2} = a^{2} + b^{2} - 2ab \cos C$ $= 9 + 16 - 2 \times 3 \times 4 \times \cos 60^{\circ}$ $= 25 - 24 \times \frac{1}{2}$ $= 13$		M1 A1 B1		M1 for correct cosine rule statement A1 for correct substitution B1 for cos $60^\circ = \frac{1}{2}$	
	$c = \sqrt{13}$		M1		M1 for taking square root	
		$\sqrt{13}$ cm	A1 6		A1 for correct surd form	
44	B	$\begin{pmatrix} 6\\2 \end{pmatrix}$	B1 B1	2	B1 for correct diagram B1 for correct vector	М
	A C		2			
45		No. To work out the return vector, multiply each component by –1.	B1	2	B1 for No	М
		The return vector is $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$.	B1 C1		B1 for correct vector C1 for a clear explanation of what Joel should have done	
			3			

46 a	115° 115° 75°		C3 C3	2	C1 for showing construction of 60° C1 for showing bisection of 60° C1 for showing bisection of 30° to show 15° C1 for showing construction of 90° C1 for showing construction of 90° C1 for showing construction of 60° to leave a 30° angle C1 for bisecting that 30° angle to leave 75°	Η
	*		6			
47		Each angle bisector is the locus of points equidistant from the two arms or sides of the angle. Hence, where they all meet will be the only point that is equidistant from each of the three sides.	C2	2	M1 for explanation referring to the bisector being equidistant M1 for the interpretation of the intersections	Н
		Hence a circle can be drawn inside the triangle, with this centre, that just touches each side of the triangle.	P1 3		P1 for the use of a diagram to help interpret the explanation	

48 a–d	B	M1 A1	2	M1 for method of constructing any midpoint A1 for all three midpoints correct and labelled	Н
	D. Y.E.	M1		M1 for constructing any perpendicular from a vertex to opposite face	
	L M	A1 A1		A1 for all three correct A1 all 3 feet correctly labelled	
		M1 A1		M1 for constructing a midpoint of AO or BO or CO A1 for all midpoints correct and labelled	
e		M1 A1		M1 for constructing a bisector of LM or LN or MN A1 for all three bisectors correct and point of intersection labelled P	
f	A circle, centre P, should pass through each of the nine labelled points.	C1		C1 for correct explanation	
		10			
49	AB = CD (given)	C3	2	C1 for correct statement with justification C1 for correct statement with justification	Н
	$\angle ABD = \angle CDB$ (alternate angles)			C1 for correct statement with justification	
	$\angle BAC = \angle DCA$ (alternate angles)				
	so ΔABX≡ΔCDX (ASA)	C1		C1 for stating ASA within correct explanation	
		4			
50	AB and PQ are the corresponding sides opposite the 50° angle but they are not equal in length.	C2 2	2	C1 for stating the corresponding side link C1 for complete clear statement	н

51 a		Joining adjacent midpoints forms a right-angled isosceles triangle, with the perpendicular sides each half the length of the side of the square. All four triangles are congruent. At each midpoint, there are two angles of 45°, leaving the vertex of the new shape being 90°. Since all the sides are equal and all the angles are 90°< the new shape is a square.	C2 C1	2	C1 for explaining all sides are the same length C1 for explaining how all angles are 90° C1 for communicating a given original side length and finding the length of a side of the inscribed square	Н
b	Area of original rectangle = x^2 If the length of the side of the inscribed square is <i>h</i> , then:		M1		M1 for correctly using Pythagoras' theorem to find the length of the side of the new square	
	$h^2 = \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2$		A1		A1 for correct expression of h^2	
	$h^{2} = \frac{2x^{2}}{4}$ $h^{2} = \frac{x^{2}}{2}$ Area of inscribed square is h^{2}	The area of the inscribed square is half the area of the original square.	A1 C1		A1 for correctly stating area C1 for clear communication of complete solution	
	$=\frac{x^2}{2}$		7			
52		Each internal angle of an octagon is 135°. Each internal angle of a hexagon is 120°. The sum of these two angles is 255°. The sum of the angles in a quadrilateral is 360° so the sum of the remaining angles is: $360^{\circ} - 255^{\circ}$ = 105°. The two remaining angles are equal, as	C2 B1 M1 A1 C2	2	C1 for explanation of 135° C1 for explanation of 120° B1 for 255° M1 for subtraction from 360° A1 for 105° C1 for explaining two angles are equal	н
		the line joining through the vertices C, J, G and L (and thus through the obtuse angles) is a line of symmetry. JFG = 52.5°	B1 8		C1 for clear reasons given as to why B1 for correct 52.5°	

53	Use the sine rule in both triangles.	M1	2	M1 for use of sine rule	Н
	$\frac{\sin P}{b} = \frac{\sin C}{p}$	A1		A1 for correct equation	
	$\frac{\sin A}{a} = \frac{\sin C}{c}$	A1		A1 for correct equation	
	$\sin A = \frac{a \sin C}{c}$				
	As $A = P$, then sin $P = \sin A$	M1		M1 for equating both known angles	
	So $\frac{b \sin c}{p} = \frac{a \sin C}{c}$				
	Hence $\frac{b}{p} = \frac{a}{c}$	B1		B1 for correct statement linking <i>p</i> , <i>a</i> , <i>b</i> and <i>c</i>	
	Hence $\frac{p}{b} = \frac{c}{a}$	P1		P1 for clear communication of the full solution	
	So $p = \frac{bc}{a}$				
		6			

		1			1
54	Use Pythagoras' theorem to write		2		Н
	expressions for z^2 .				
	Triangle ABC: $z^2 = r^2 + (s + y)^2$				
	Triangle ABD: $z^2 = w^2 + (x + t)^2$				
	So $r^2 + (s + y)^2 = w^2 + (x + t)^2$	P1		P1 for combining expressions	
	Now $r^2 = x^2 - s^2$				
	and $w^2 = y^2 - t^2$				
	Substitute for r^2 and w^2 in the equation:				
	$x^{2} - s^{2} + (s + y)^{2} = y^{2} - t^{2} + (x + t)^{2}$	P1		P1 for substitution	
	Multiply out the brackets:				
	$x^2 - s^2 + s^2 + 2sy + y^2$				
	$= y^2 - t^2 + x^2 + 2xt + t^2$	P1		P1 for multiplying out to get individual terms	
	Simplify:				
	$x^2 + 2sy + y^2 = y^2 + x^2 + 2xt$	P1		P1 for simplifying	
	2sy = 2xt				
	sy = xt				
	Alternatively:				
	Assume T is the intersection of AD and				
	BC. ACT is similar to BDT as both	P1		P1 for clear explanation	
	contain the same angles. (Angles ATC				
	and BTD are vertically opposite and so				
	are equal.)				
	ale equal.				
	Honce by similarity $x = s$			r s	
	Hence by similarity $\frac{x}{y} = \frac{s}{t}$	C1		C1 for $\frac{x}{y} = \frac{s}{t}$	
	So $xt = sy$	C1		C1 for clear communication of proof	
		7			
L					I I

			-	- · ·	
55 a	Take the smallest two sides, square each of them, add the squares together then find the square root of the sum.	C1	2	C1 for correct Pythagoras statement	Н
	If this root is equal to the length of the longest side, then the triangle is right angled.	C1		C1 for clear explanation	
	If the root is smaller than the length of the longest side, then the angle is greater than 90°.	C1		C1 for clear explanation	
	If the root is larger than the length of the longest side then there is no angle greater than 90°.	C1		C1 for clear explanation	
b	In the first triangle the hypotenuse is $\sqrt{5^2 + 12^2} = \sqrt{139} = 13$	B1		B1 for 13	
	In the second triangle, the hypotenuse is 12 with the unknown side $\sqrt{12^2 - 5^2} = \sqrt{119}$, which is				
	between 10 and 11 cm.	B1		B1 for side length between 10 and 11 or more accurate.	
	So they both have a short side of 5 cm.	C1		C1 for explanation of what is the same	
	But the lengths of the other short side and the hypotenuse are	C1		C1 for clear explanation of what is different	
	different.	8			
56	$A \xrightarrow{x} \xrightarrow{x} B \\ x \\ M \\ x \\ P \\ r \\ r$	C1	3	C1 for clear diagram	Н
	D The top triangle ABM: $(m + t + n)^2 = (2x)^2 + x^2 = 5x^2$	M1 A1		M1 for using a large triangle to identify parts A1 for correct equation	
	So $m + t + n = x\sqrt{5}$ Putting together shape P and Q:	M1 A1		M1 for method of adding P and Q	

area = $(m + n)t$		A1 for $(m + n)t$
So the area, A, of the whole shape is: top triangle ABM + bottom triangle DCN + $(P + Q) + t^2$	M1	M1 for adding all separate components
Area of ABM = $\frac{1}{2} \times 2x \times x = x^2$ Area of DCN = $\frac{1}{2} \times 2x \times x = x^2$ So total area = $x^2 + x^2 + (m + n)t + t^2$ = $2x^2 + t(m + n + t)$ But $m + n + t = x\sqrt{5}$	A1 M1	A1 for correct statement of A M1 for substituting $(m + n + t)$
So $A = 2x^2 + tx\sqrt{5}$ But the sides are of length 2 <i>x</i> , so $A = 4x^2$ Then $2x^2 + tx\sqrt{5} = 4x^2$	B1 M1	B1 for whole area $4x^2$ M1 for equating the two equations
and $tx \sqrt{5} = 2x^2$ $t \sqrt{5} = 2x$ Squaring each side gives:	A1 M1	A1 for equation enabling <i>t</i> to be identified M1 for squaring
Squaring each side gives: $5t^2 = 4x^2$ $t^2 = \frac{4x^2}{5}$	A1	A1 for correct expression for t^2
Whole area $A = 4x^2$ Hence the middle square, t^2 , is $\frac{1}{5}$ of A .	C1 C1	C1 for clear explanation showing $\frac{1}{5}$ idea C1 for complete clear solution
	15	

		1	-		
57 a	Not true. For example these are both right-angled triangles but their sides are not in proportion.	B1 C1	2	B1 for not true C1 for clear explanation with an example drawn to illustrate	H
b	True. With an enlargement the final shape will be in the same <i>proportion</i> as the original so it will be similar.	B1 C1		B1 for true C1 for clear explanation	
с	True. All circles are in proportion to each other and so will be similar.	B1 C1 6		B1 for true C1 for clear explanation	
58 a	Any two regular polygons with the same number of sides will have the same angles so the ratio of lengths of the sides will be the same. This means the shapes will be similar.	C1 P1	2	C1 for clear example P1 for use of diagrams to support the explanation	Н
b	A B A B B C D				
	As the corresponding sides of triangle A and triangle B are the same, the two triangles are congruent, SSS. Therefore equivalent angles are the same. This demonstrates the corresponding angles between parallel lines are the same.	C1 P1		C1 for clear explanation P1 for use of diagram to clarify explanation	

59 a	A 4 3 2 B 1 B 1 C C C C C C C C C C C C C C C C	B1	2	B1 for accurate image B drawn	H
b	$\begin{array}{c} -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & $	B2		B1 for enlargement of scale factor –2 B1 for correct enlargement to image C	
с	-56	B2		B1 for enlargement scale factor $-\frac{1}{2}$ B1 for centre of enlargement (-6, 2)	
	Enlargement with scale factor $-\frac{1}{2}$ about (-6, 2).				
60	Enlargement with sf –3 about (1, 2). Drawing lines from the two vertices at the base of triangle A to their image points in B.	5 B1	2	B1 for correct statement	Н
	The intersection shows the centre of enlargement. The base of A is 2 squares wide, the base of B is 6 squares wide, and 6 is 3 times 2, so the sf is 3.	C1 C1		C1 for explanation of how centre of enlargement is found C1 for explanation how sf is found	
		3			

61 a	Examine the four possible starting points for the stamp. These are at the top right and bottom left of each side, allowing for 180° rotation of each side. Four rotations mean that each of these points is covered once.	C1	2	C1 for clear explanation	Н
Ь	No, the machine would not detect the stamp placed on the top left-hand corner because none of the rotations will put the stamp in the top right-hand corner.	B1		B1 for No	
с	Four corners on each side could possibly be the 'top right'.	C1		C1 for clear explanation	
d	One way is to rotate about H and then rotate about one of the diagonals (call it D). Keep repeating the sequence H, D, H, D, to check all eight corners.	C1 4		C1 for clear explanation	
62	A M B		2		Н
	The hypotenuses (OA and OB) are the same, as each is a radius of the circle. OM is common to both triangles. OMA and OMB are both right angles. Triangles OAM and OBM are	C4		C1 for hypotenuse same C1 for OM common B1 for right angles C1 for congruency	
	congruent, therefore $AM = MB$. Therefore, M is the midpoint of AB and the chord has been bisected, as required.	C2		C1 for clear explanation and good use of mathematical language. C1 for use of diagram to support proof	

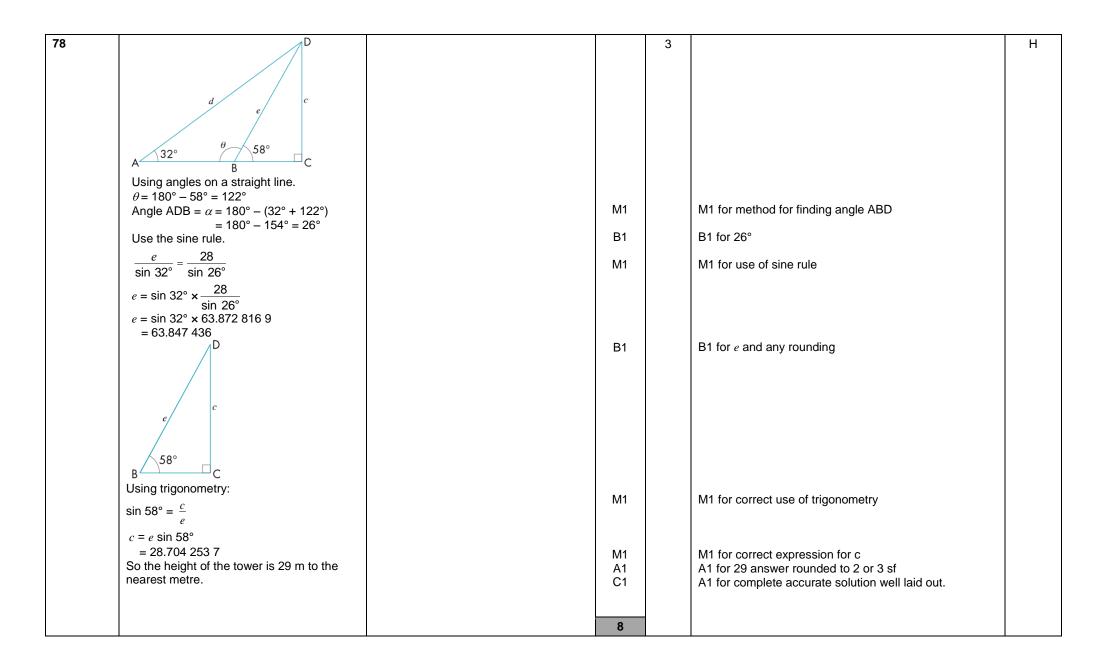
63	Circle Theorem 1 states that the angle at the centre of a circle is twice the angle at the circumference when they are both subtended by the same arc.	P2	2	P1 for stating Theorem 1 P1 for extending this to this proof	Н
	Theorem 1 tells you that any angle subtended from arc AB at a point C on the circumference is always half the angle subtended from arc AB at the	C1		C1 for clear overall explanation and clarity	
	centre.	C1		C1 for use of diagram and mathematical language	
	C_1				
	Therefore, every possible angle subtended from arc AB at the circumference will correspond to the same angle at the centre.				
	Hence all the angles subtended at the circumference will be equal.	4			

64		A	C1	2	C1 for clear use of diagram	Н
		$B \xrightarrow{x} C$		L		
		Draw triangle BCP, where P is on the circumference in the opposite segment.	M1		M1 for using point P	
		Then angle BPC is $180^{\circ} - x$ as BAC and BPC are opposite angles in a cyclic quadrilateral. Angle BOC is double BPC, which is	A1		A1 for 180 – <i>x</i>	
		$360^{\circ} - 2x$. Angle BCO will also be <i>y</i> , as BCO is an isosceles triangle. Angles in triangle OBC sum to 180°,	A1 B1		A1 for identifying $360^\circ - 2x$ B1 for identifying BCO	
		so $2y + 360^\circ - 2x = 180^\circ$ and $2y = 2x - 180^\circ$ Divide both sides by 2 to give: $y = x - 90^\circ$.	M1 A1		M1 for adding known angles together A1 for simplifying	
			C1 8		C1 for a clear, well presented solution	
65	As ABCD is a cyclic quadrilateral, the opposite angles will sum to 180°. So $2x - 5^\circ + 5y - 20^\circ = 180^\circ$ $2x + 5y = 205^\circ$ (1) And $3y + 5 + 2x + 20^\circ = 180^\circ$ $2x + 3y = 155^\circ$ (2)		C1 M1 A1 A1	2	C1 for explanation of cyclic quadrilateral M1 for adding opposite angles A1 for first correct equation	Н
	Subtract (2) from (1): $2y = 50^{\circ}$		M1		A1 for second correct equation M1 for method of eliminating one variable	
	$y = 25^{\circ}$ Substitute y into (2): $2x + 75^{\circ} = 155^{\circ}$ $2x = 80^{\circ}$	y = 25°	A1 M1 A1		A1 for 25° M1 for method of substitution A1 for 40°	
	$x = 40^{\circ}$	$x = 40^{\circ}$	8			

66	$A = \begin{pmatrix} A & 6 \\ 3 \\ 3 \\ 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$		C1	3	C1 for good clear diagram showing perpendiculars to Y and Z	Н
	A 9 3 T B		C1		C1 for clear diagram of ABT	
	Drop perpendiculars down to Y and X and complete the trapezium, with the top triangle being ABT, as shown.		C1		C1 for clear explanation of how the triangle ABT has been formed	
	Length TB will be the same as YZ. Use Pythagoras' theorem on triangle ABT. TB ² = $9^2 - 3^2$ = $81 - 9$ = 72		M1 A1		M1 for use of Pythagoras' theorem A1 for correct statement	
	TB = $\sqrt{72}$ = 8.485 281 4	8.49 cm	A1 6		A1 for correct answer to 2 or 3 sf	
67	Circle Theorem 1 states The angle at the centre of a circle is twice the angle at the circumference when they are both subtended by the same arc.Theorem 1 tells you that any angle subtended from arc AB at a point C on the circumference is always half the angle subtended from arc AB at the centre.		P2 C1	3	P1 for stating Theorem 1 P1 for extending this to this proof C1 for clear overall explanation and clarity	Н
	C_2 C_3 C_4 C_1 A B		C1		C1 for use of diagram and mathematical language.	
	Therefore, every possible angle subtended from arc AB at the circumference will correspond to the same angle at the centre.					
	Hence angles subtended at the circumference are equal.		4			

68 a	The angle PQS is the same as PRS, 3 <i>x</i> , as they are angles in the same quadrant		C1	2	C1 for clear explanation	Н
	(subtended by the same arc).		M1		M1 for using angles in a triangle	
	The angle sum of triangle PQT is 180°. Hence $2x + 3x + 5x = 180^{\circ}$					
	$10x = 180^{\circ}$					
_	<i>x</i> = 18°	<i>x</i> = 18	A1		A1 for 18	
b	Complete the diagram with all the known					
	Complete the diagram with all the known angles.		C1		C1 for clear use of a diagram marked with all the angles	
	Q		_			
	54° 18° 72° R					
	54°		C1		C1 for clear explanation	
	36° P 18° 72° S		C1		C1 for finding all the angles and showing them clearly	
	You can now see that: angle $P = 54^\circ$, angle					
	Q = 72°, angle R = 126°, angle S = 108°					
	and angle STP = 90° .		C1		C1 for clear explanation of the number sequence found	
	The numbers 54, 72, 90, 108 and 126 form a sequence with a difference of 18.		7			

69			3		Н
	1.2 m 40 cm				
	As it is shown in the diagram, the proportion of the height of the container	M1		M1 for method of finding proportion of height	
	that is filled is $\frac{80}{120} = \frac{2}{3}$.	A1		A1 for $\frac{2}{3}$	
	The current volume of water is $90 \times 40 \times 80 = 288\ 000\ \text{cm}^3$.	B1		B1 for 288 000	
	Assume you move the container so that the base is 40 × 120. The volume of water must stay the same and take its height as C cm. Then: $40 \times 120 \times C = 288\ 000$ so $4800 \times C = 288\ 000$ C = 60 Comparing this with the height, 90 cm: $\frac{60}{90} = \frac{2}{3}$	C2		C1 for clear explanation of changing to a different base C1 for structure and clarity of explanation	
	Now assume you move the container so the base is 90 × 120 then $90 \times 120 \times C = 288\ 000$ $10\ 800C = 288\ 000$ $C = \frac{80}{3}$	C2		C1 for clear explanation of changing to a different base C1 for structure and clarity of explanation	
	Comparing this with the height, 40 cm:				
	$\frac{\frac{80}{3}}{40} = \frac{80}{3 \times 40} = \frac{80}{120} = \frac{2}{3}$ So the proportion of the height of the				
	container that is filled with water remains constant.	C1		C1 for clear explanation	
		8			


70 a		The end face or cross-section of a right prism is a polygon and is perpendicular to the vertical sides all through its length. The end faces (polygons) are the same shape and size. The volume is equal to the area of cross-section \times the height of the prism. So if you know the height and the volume you know the area of the cross-section but not the dimensions or the shape of the base of the prism.	C3	2	C1 for perpendicular sides C1 for same base as top C1 for statement about base area	Н
b	Assume the sides all have integer values. The formula for the volume of the prism will be: $a \times b \times 10 = 160 \text{ cm}^3$	Only 1	B1		B1 for answer 1	
	but if the base is a square, then $a = b$. $a^2 = 16 \text{ cm}^3$ This has only one solution: $a = 4$.	4 × 4 × 10	B1 C1		B1 for identifying the $4 \times 4 \times 10$ C1 for clarity and detail of explanation	
			6			
71 a		The formula for the circumference of circle is $2\pi r$. This is just a length, r , multiplied by a number, so the answer will still be a length. The formula for the area of a circle is πr^2 . This is a number multiplied by a length squared so this will be an area.	C2	2	C1 for explanation about circumference C1 for explanation about area	Н
b		A formula for a surface area will include the product of two lengths, but a formula for a volume will include the product of three lengths.	C1		C1 for clear of explanation	
С		$\frac{1}{3}b^2h$ includes the produce of three lengths, $b \times b \times h$ and so must be the volume. $4\pi r^2$ includes the product of two lengths, $r \times r$, and so must be the area.	C1 C1 P1		C1 for clear explanation C1 for clear explanation P1 for demonstrating an understanding of how to help other people to understand this concept.	

72 Identify the third arrangement. The single row of 8 cubes shows the cuboid must have a volume of 8 cubes. The missing arrangement is a 1 x 2 x 4. Cuboid. B1 B1 for volume being 8 cubes B1 Find the amount of string for each of the arrangements. P1 P1 B1 for missing dimensions P1 for clearly showing how to find the missing arrangement. B1 Find the amount of string for each of the arrangements. P1 M1 M1 for correct method of using formula A1 For the cuboid above, 1 x 2 x 4: L = 4 x 15, W = 2 x 15, H = 1 x 15 and S = 2 x 60 + 2 x 30 + 4 x 15 + 20 = 260 cm M1 M1 for correct method of using formula A1 for 260 For the 1 x 1 x 8 cuboid: L = 2 x 15, W = 1 x 15 and S = 2 x 10 + 2 x 15 + 4 x 15 + 20 = 350 cm A1 A1 for 260 A1 for 260 For the 1 x 1 x 4 cuboid: L = 2 x 15, W = 2 x 15, H = 2 x 15 and S = 2 x 30 + 2 x 30 + 4 x 30 + 20 = 260 cm A1 A1 for 260 B1 for identifying which uses least string C1 for clear complete solution. A1 for 260 B1 for identifying which uses least string C1 for clear complete solution. A1 for 260		1			1		
The single row of 8 cubes shows the cuboid must have a volume of 8 cubes.B1B1 for volume being 8 cubesThe missing arrangement is a $1 \times 2 \times 4$ cuboid.B1B1 for missing dimensionsFind the amount of string for each of the arrangements.P1P1 for clearly showing how to find the missing arrangementFind the amount of string for each of the arrangements.M1M1 for correct method of using formulaFor the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1For the $1 \times 1 \times 8$ cuboid: $L = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 280 \text{ cm}$ A1A1 for 260For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 20 + 2 \times 2 \times 2$ A1B1 for identifying which uses least string C1 for clear complete solution.B1	72	l la	dentify the third arrangement.		2		Н
cuboid must have a volume of 8 cubes. The missing arrangement is a 1 \times 2 \times 4 cuboid.B1 for missing dimensionsP1 for clearly showing how to find the missing arrangement.Find the amount of string for each of the arrangements.For the cuboid above, 1 \times 2 \times 4: $L = 4 \times 15$, $W = 2 \times 15$, $H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ 				B1		B1 for volume being 8 cubes	
The missing arrangement is a $1 \times 2 \times 4$ B1B1 for missing dimensionscuboid.P1P1 for clearly showing how to find the missing arrangementFind the amount of string for each of the arrangements.P1P1 for clearly showing how to find the missing arrangementFor the cuboid above, $1 \times 2 \times 4$; $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1M1 for correct method of using formulaFor the cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1A1 for 260For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260B1 for identifying which uses least string C1 for clear complete solution.A1 for 260							
cuboid.P1P1 for clearly showing how to find the missing arrangementFind the amount of string for each of the arrangements.P1 for clearly showing how to find the missing arrangementFor the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1For the 1 $\times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 300 + 2 \times 300 + 4 \times 300 + 20$ $= 260 \text{ cm}$ A1A1A1 for 350For the 2 $\times 2 \times 2$ cuboid: $L = 2 \times 15, H = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 300 + 2 \times 300 + 4 \times 300 + 20$ $= 260 \text{ cm}$ S0 the least amount of string is used in the 1 $\times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.A1B1B1 for identifying which uses least string C1 for clear complete solution.				R1		B1 for missing dimensions	
P1P1 for clearly showing how to find the missing arrangementFind the amount of string for each of the arrangements.P1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1M1M1 for correct method of using formula $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 30 + 4 \times 30 + 20$ M1A1A1A1A1 for 260For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 4 \times 10 + 2 \times 2 \times 2$ $= 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 2 \times 20 \text{ cm}$ A1A1B1 B1 for identifying which uses least string C1 for clear complete solution.				ы			
Find the amount of string for each of the arrangements.AllM1For the cuboid above, $1 \times 2 \times 4$; $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1M1 for correct method of using formulaFor the 1 x 1 x 8 cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ M1M1 for correct method of using formulaFor the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 350For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260B1 C1B1 C1B1 C1A1 for 260				54			
Find the amount of string for each of the arrangements.M1M1 for correct method of using formulaFor the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1M1 for correct method of using formulaFor the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15, H = 1 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 350For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260B1 for identifying which uses least string C1 for clear complete solution.A1				P1			
arrangements.M1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1A1A1For the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.						arrangement	
arrangements.M1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1For the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the least amount of string is used in the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.A1							
arrangements.M1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1For the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the least amount of string is used in the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.A1							
arrangements.M1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1A1A1For the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.							
arrangements.M1For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1A1A1For the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.			Find the amount of string for each of the				
For the cuboid above, $1 \times 2 \times 4$: $L = 4 \times 15, W = 2 \times 15, H = 1 \times 15$ and $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ M1M1 for correct method of using formulaFor the $1 \times 1 \times 8$ cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1A1 for 260For the $2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260For the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.A1A1 for 260							
$L = 4 \times 15, W = 2 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ For the 1 x 1 x 8 cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1 A1 A1 A1 A1 A1 A1 A1 For Correct method of using formula A1 for 260 A1 For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2		a	anangements.				
$L = 4 \times 15, W = 2 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ For the 1 x 1 x 8 cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1 A1 A1 A1 A1 A1 For Correct method of using formula A1 for 260 A1 For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements. A1							
$S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20$ $= 260 \text{ cm}$ For the 1 x 1 x 8 cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15, H = 1 \times 15 \times 40$ $= 350 \text{ cm}$ A1 A1 for 350 For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements. A1 A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.				N/1		M1 for correct method of using formula	
= 260 cmA1A1 for 260For the 1 x 1 x 8 cuboid: $L = 8 x 15, W = 1x15, H = 1x15 and$ $S = 2 x 120 + 2 x 15, H = 1x15 and$ $S = 2 x 120 + 2 x 15 + 4 x 15 + 20$ $= 350 cm$ A1A1 for 350For the 2 x 2 x 2 cuboid: $L = 2 x 15, W = 2 x 15, H = 2 x 15 and$ $S = 2 x 30 + 2 x 30 + 4 x 30 + 20$ $= 260 cm$ A1A1 for 260So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements.A1A1 for 260						wit for correct method of using formula	
For the 1 x 1 x 8 cuboid: $L = 8 \times 15, W = 1 \times 15, H = 1 \times 15$ and $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ = 350 cm For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ = 260 cm So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements. A1 A1 A1 A1 A1 A1 A1 A		~				A44 000	
$L = 8 \times 15, W = 1 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ For the 2 × 2 × 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 × 2 × 4 and the 2 × 2 × 2 arrangements. A1 for 260 B1 for identifying which uses least string C1 for clear complete solution. B1 for identifying which uses least string C1 for clear complete solution.		=	= 260 cm	A1		A1 for 260	
$L = 8 \times 15, W = 1 \times 15, H = 1 \times 15 \text{ and}$ $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ For the 2 × 2 × 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 × 2 × 4 and the 2 × 2 × 2 arrangements. A1 for 260 B1 for identifying which uses least string C1 for clear complete solution. B1 for identifying which uses least string C1 for clear complete solution.							
$S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ A1A1 for 350For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1 B1 C1A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.			For the $1 \times 1 \times 8$ cuboid:				
$S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20$ $= 350 \text{ cm}$ For the 2 × 2 × 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15 \text{ and}$ $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ So the least amount of string is used in the 1 × 2 × 4 and the 2 × 2 × 2 arrangements. A1 for 260 B1 for identifying which uses least string C1 for clear complete solution.			$U = 8 \times 15$, $W = 1 \times 15$, $H = 1 \times 15$ and				
= 350 cmA1A1 for 350For the $2 \times 2 \times 2$ cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 cm$ A1A1 for 260 B1 for identifying which uses least string C1So the least amount of string is used in the 1 $\times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.A1C1							
For the 2 x 2 x 2 cuboid: $L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ = 260 cm So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements. A1 A1 for 260 B1 for identifying which uses least string C1 C1 C1 for clear complete solution.				A1		A1 for 350	
$L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260So the least amount of string is used in the 1 $\times 2 \times 4$ and the 2 $\times 2 \times 2$ arrangements.B1 C1C1		=	- 550 611				
$L = 2 \times 15, W = 2 \times 15, H = 2 \times 15$ and $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ $= 260 \text{ cm}$ A1A1 for 260So the least amount of string is used in the 1 $\times 2 \times 4$ and the 2 $\times 2 \times 2$ arrangements.B1 C1C1							
$S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20$ = 260 cm So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements.							
= 260 cm So the least amount of string is used in the 1 x 2 x 4 and the 2 x 2 x 2 arrangements. A1 $ A1 for 260 $ B1 for identifying which uses least string C1 for clear complete solution. C1							
So the least amount of string is used in the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ B1 C1B1 for identifying which uses least string C1 for clear complete solution.arrangements. $C1$ $C1$ $C1$						A4 (
the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ arrangements.		=	= 260 cm				
the $1 \times 2 \times 4$ and the $2 \times 2 \times 2$ C1 C1 for clear complete solution.		S	So the least amount of string is used in				
arrangements.				C1		C1 for clear complete solution.	
		۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲		٩			
				3			

73	Quefere and the door of		0		
73	Surface area of end = $1000 \div 20$ = 50 cm^2	B1	3	B1 for 50	Н
	Consider a cuboid with a square end.				
	Side length of square = $\sqrt{50}$ = 7.0711	B1 B1		B1 for 7.07 any rounding	
	Surface area (SA)	Ы		B1 for 665.6 any rounding 2sf or more	
	= 50 + 50 + 4 × 7.0711 × 20 = 665.6 cm ²				
	Consider a triangular prism with a				
	triangular end.				
	Area of triangular end = $\frac{1}{4}\sqrt{3}a^2 = 50$	M1		M1 for use of given formula	
	So $a^2 = \frac{200}{\sqrt{3}} = 115.470\ 054$				
	a = 10.745 70 cm	A1		A1 for 10.75 any rounding 2sf or more	
	SA = 50 + 50 + 3 × 10.745 70 × 20	A1		A1 for 745 any rounding 2sf or more	
	$= 745 \text{ cm}^2$	AI		A 1 lot 745 any rounding 2st of more	
	Consider a cylinder with a circular end. Then $\pi r^2 = 50$				
		M1		M1 for use of formula	
	$r = \sqrt{\frac{50}{\pi}} = 3.989 \ 42$	A1		A1 for correct answer to any rounding	
	$SA = 50 + 50 + \pi \times 2 \times 3.989 \ 42 \times 20$				
	$= 601.4 \text{ cm}^2$	A1		A1 for 601.4 any rounding	
	Differences between the three surface	C1		C1 for clear explanation	
	areas:				
	 surface area of the triangular prism is 	C1		C1 for clear explanation	
	\sim Surface area of the triangular prisms 79.4 cm ² larger than the cuboid and	CI			
	143.6 cm ² larger than the cylinder				
	 surface area of cuboid is 				
	64.2 cm ² larger than the	C1		C1 for clear explanation	
	cylinder.				
	The larger the surface area, the	C1		C1 for a clear complete solution	
	more packaging material is required				
	therefore the higher the production costs.	40			
		13			

74	Use the cosine rule. $AB^2 = 2.1^2 + 1.8^2 - 2 \times 2.1 \times 1.8 \times \cos 70^\circ$ $= 5.064 \ 328$ $AB = \sqrt{5.06} = 2.250 \ 406$ Extra distance = $(2.1 + 1.8) - 2.25 \ \text{km}$	1.65 km	M1 A1 A1 A1 A1 5	3	M1 for use of cosine rule A1 for correct substitution into cosine rule A1 for 5.06 rounded to 3 or more sf A1 for 2.25 rounded to 2 or 3 sf A1 1.65 rounded to 2 or 3 sf	Н
75	Y Y Z km B		C1 M1	3	C1 for clear diagram showing all data	Н
	Use Pythagoras' theorem to find BY. BY = $\sqrt{9+4}$ = 3.605 551 3 Use the right-angled triangle XYB to find XY. $\frac{XY}{BY}$ = tan 6°		A1		M1 for use of Pythagoras' theorem A1 for BY unrounded	
	BY = 14110 $XY = BY \times \tan 6^{\circ}$ = 0.378 958 7 km = 378.9587 m	379 m	M1 A1 A1 6		M1 for use of tangent A1 for XY unrounded A1 for 379 in metres and rounded to 2 or 3 sf	
76 a	R R P R R		C1	3	C1 for use of clear diagram	Н
b	$PM = \sqrt{8^2 + 4^2} = \sqrt{80}$ PM = 8.944 271 9 cm	8.9 cm	M1 A1 C1		M1 for use of Pythagoras' theorem A1 for 8.9 rounded to 2 or 3 sf C1 for clear diagram	

c	V $Q = \frac{10}{4 \text{ M}} R$ $VM = \sqrt{10^2 + 4^2} = \sqrt{116}$ VM = 10.770 33 V $\sqrt{116}$	10.8 cm	M1 A1 C1		M1 for use of Pythagoras' theorem A1 for 10.8 rounded to 2 or 3 sf C1 for use of clear diagram	
d	$P = \frac{1}{2} \sqrt{80}$ $r = \frac{1}{2} \sqrt{80}$ $r = 0.415 227 4$ Angle VPM = 65.466 362° Vertical height of V above face PRQ is	65.5°	M1 A1 C1 M1		M1 for use of correct cosine A1 for 65.5 rounded to 2 or 3 sf C1 for explanation of how the height is to be found M1 for use of Pythagoras' theorem	
	given by VT in diagram above. $VT = \sqrt{VM^2 + (\frac{1}{2}PM)^2} = \sqrt{116 + \frac{1}{4} \cdot 80}$ $= \sqrt{136}$ $= 11.661 \ 904$ Add the 15 cm of the base to give 26.661 904 cm.	26.7 cm	A1 A1 13		A1 for 11.619 04 and any rounding 3 or more sf A1 for 26.7 rounded to 2 or 3 sf	
77	He needs to find half of AC (not AC) to make a right-angled triangle. i.e. $\cos x = \frac{1}{2}\sqrt{208} = 0.721 \ 110$		C1 M1	2	C1 for clear explanation M1 for correct cosine method	Н
	= cos ⁻¹ 0.721 110 = 43.853 779°	43.9	A1 3		A1 for 43.9 rounded to either 2 or 3 sf	

79 $\sin 24^\circ = \frac{t}{4.7}$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow	Н
A A C1 C1 for a clear diagram with all relevant lengths ar	
H 128° e angles marked	ıd
$ \begin{array}{c} d \\ s \\ $	
$\frac{66^{\circ} 90 - 66}{= 24^{\circ}}$	
$t = 4.7 \sin 24^{\circ}$ M1 M1 for method of finding t	
$\cos 24^{\circ} = \frac{x}{4.7}$ A1 A1 for correct expression of t M1 M1 M	
$x = 4.7 \cos 24^{\circ}$ A1 A1 for correct expression of x	
$\sin 52^\circ = \frac{y}{8.6}$ M1 M1 for method of finding y	
$y = 8.6 \sin 52^{\circ}$ A1 A1 for correct expression of y	
$\cos 52^\circ = \frac{s}{8.6}$ M1 M1 for method of finding s	
$s = 8.6 \cos 52^{\circ}$ A1 A1 for correct expression of s	
$e = x + y = 4.7\cos 24^\circ + 8.6\sin 52^\circ$ M1 M1 for method of finding e	
= 11.070 556 km A1 A1 for correct <i>e</i> , rounded to 4 or more sf	
$f = s - t = 8.6 \cos 52^\circ - 4.7 \sin 24^\circ$ M1 M1 for method of finding f	
= 3.383 0264 km A1 A1 for correct <i>f</i> rounded to 4 or more sf	
Use Pythagoras' theorem to find <i>d</i> . M1 M1 for using Pythagoras' theorem $d = \sqrt{e^2 + f^2}$	
- \sqrt{134.002}	
= 11.575 93 km A1 A1 for correct d any value 3 st or more	
$= 11.6 \text{ km}$ Use trigonometry to find β .	
$\tan \beta = \frac{e}{f} = \frac{11.070556}{3.3830264}$ M1 M1 for method of finding β	
$\begin{array}{c c} = 3.272382 \\ \beta = \tan^{-1} 3.272 \ 382 = 73.007 \ 489^{\circ} \end{array} \qquad A1 \qquad A1 \ for \ \beta \ to \ 4 \ or \ more \ sf \end{array}$	

		The required bearing = 360° – β = 286.992 510 8° = 287°	A1 C1 20		A1 for final three-figure bearing C1 for effective use of diagrams and good use of mathematical language	
80	Use the sine rule to work out angle B. $\frac{\sin B}{10} = \frac{\sin 32^{\circ}}{6}$ $\sin B = \frac{10\sin 32^{\circ}}{6}$ $B = \sin^{-1} \frac{10\sin 32^{\circ}}{6} = 62^{\circ}$		M1 A1	3	M1 for use of sine rule A1 for 62°, accept any rounding to 2sf or more	Н
	6 But we know ABC is obtuse, so: $B = 180^\circ - 62^\circ = 118^\circ$ Then $C = 180^\circ - (118^\circ + 32^\circ) = 30^\circ$ Use the sine area rule. Area = $\frac{1}{2}ab\sin C$ = $\frac{1}{2} \times 10 \times 6 \times \sin 30^\circ$ = 15 cm ²	15 cm ²	A1 B1 M1 A1 C1 8		A1 for 118° and any rounding to 3sf or more B1 for 30° with any rounding to 2sf or more M1 for use of area sine rule M1 for correct substitution A1 for 15 rounded to 2 or 3 sf C1 for a complete solution clearly set out with correct mathematical language and symbols	
81 a	20 m 20 m 23 m 10 m B 24 m C Use Pythagoras' theorem to work out <i>H</i> . $H = \sqrt{10^2 + 24^2}$		C1 M1 A1	3	C1 for use of clear diagram M1 for use of Pythagoras' theorem A1 for 26 cao	Н
	= 26 Use the cosine rule to work out angle D. $\cos D = \frac{20^2 + 23^2 - 26^2}{2 \cdot 20 \cdot 23} = 0.275$ $D = 74.037\ 986^\circ$		M1 A1		M1 for use of cosine rule A1 for <i>D</i> and any rounding to 2 or more sf	

	Use the area sine rule to work out the area		M1			
	of triangle ADC.				M1 for use of area sine rule	
	Area = $\frac{1}{2} \times 20 \times 23 \times \sin 74.037986^{\circ}$		A1		A1 for area correct to 3 or more sf	
	= 221.13217 m ²					
	Area of triangle ABC = $\frac{1}{2} \times 24 \times 10$		M1		M1 for triangle area rule	
	_		A1		A1 for 120 cao	
	$= 120 \text{ m}^2$	341 m ²	C1		C1 for 341 correct to 2 or 3 sf	
b	Total area = 341.132 17 m ²					
			M1		M1 for dividing by 5	
	341.1321 ÷ 5 = 68.226 434	68 trees	A1		A1 for 68 cao	
			A1		A1 for complete clear solution with correct mathematical	
			13		notation.	
82		A D		2		Н
			C1		C1 for clear diagram showing vertical height.	
		θ				
		B b C				
		Let the vertical height of the				
		parallelogram be H.				
		$\frac{H}{H} = \sin \theta$	M1		M1 for correct use of trigonometry to find the height	
		$\frac{a}{a} = \sin \theta$				
		$H = a \sin \theta$	A1		A1 for correct height expression	
		Area of parallelogram = base × height	M1		M1 for correct method of finding area of a parallelogram	
		$= b \times a \sin \theta$	A1		A1 for correct expression that will simplify to $ab \sin \theta$	
		$= ab \sin \theta$				
			C1		C1 for complete, clear explanation with good	
					mathematical notation	
			6			
L						

83	Use Pythagoras' theorem to work out DB. DB = $\sqrt{6^2 + 8^2}$		M1	3	M1 for use of Pythagoras' theorem	Н
	= 10 cm		A1		A1 for 10 cao	
	Use the cosine rule to work out angle A. $0^2 \cdot 10^2$		M1		M1 for use of cosine rule	
	$\cos A = \frac{9^2 + 14^2 - 10^2}{2 \cdot 9 \cdot 14} = 0.702\ 380\ 9$ A = 45.381\ 658°		A1		A1 for A with any rounding to 2 or more sf	
	A = 45.361656 Use the area sine rule to work out the area of triangle ADB.		M1		M1 for use of area sine rule	
	Area = $\frac{1}{2} \times 9 \times 14 \times \sin 45.381\ 658^{\circ}$ = 44.843 478 cm ²		A1		A1 for area correct to 3 or more sf	
	Area of triangle BDC = $\frac{1}{2} \times 6 \times 8$ = 24 cm ² Total area = 68.843 478 cm ²		M1 A1		M1 for triangle area rule A1 for 24 cao	
		69 cm ²	A1 C1		A1 for 69 correct to 2 or 3 sf C1 for clear, complete solution with mathematical language	
			10			

84 a	A possible triangle is one with sides 3, 4 and 5 (check, using Pythagoras' theorem). Then $s = 6$ and the area is $\sqrt{6 \cdot 3 \cdot 2 \cdot 1}$ $= \sqrt{36} = 6$ Also, area $= \frac{1}{2} \times \text{base} \times \text{height}$		C2	2 3	C1 for showing an example that works C1 for clarity of explanation to support the example	Н
	$= \frac{1}{2} \times 3 \times 4 = 6$ which gives the same answer.					
b	Suppose the triangle has a side of 10 cm (you could use any number you like). The formula gives: $\sqrt{15^{5}5^{5}5^{5}} = \sqrt{1875} = 43.3 \text{ cm}^2$ You could also use the area sine rule: area = $\frac{1}{2}ab\sin C$		C2		C1 for showing an example that works C1 for clarity of explanation to support the example	
с	$= \frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ}$ $= 43.3 \text{ cm}^{2}$ which gives the same answer.					
	The sides of the triangle are 18 metres, 22 metres and 24 metres. So: s = 32		B1		B1 for 32	
	area = $\sqrt{32 \cdot 14 \cdot 10 \cdot 8}$ = $\sqrt{35 \cdot 480}$		M1		M1 for correct substitution	
	= 189.314 55	189 m²	A1		A1 for 189 to 2 or 3 sf	
d	A diagonal will divide the field into two triangles. Measure the four sides and a diagonal. Use the formula to find the area		C1		C1 for clear explanation	
	of each triangle separately and then add the answers together.		8			
85	One example is: Start at coordinates (1, 1), then move through translation $\begin{pmatrix} 1\\ 3 \end{pmatrix}$		B1 C3	3	Note there are a few different correct answers. Check all vectors sum to $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ B1 for having just 3 translations C1 for the describing first translation	Н
	then through translation $\begin{pmatrix} 3 \\ -3 \end{pmatrix}$		00		C1 for the describing final translation C1 for the describing final translation	

	and finish with $\begin{pmatrix} -4\\ 1 \end{pmatrix}$ to get back to (1, 1).					
			4			
86 ai ii iii iv		b – a –2a 2b – a 2b – a	B1 B1 B1 B1	2	B1 cao B1 cao B1 cao B1 cao	Н
b		Parallel and equal in length.	B1 B1 6		B1 for parallel B1 for equal in length	
87 a		They lie in a straight line, AC = $1\frac{1}{2} \times \overline{AB}$	C1 C1	2	C1 for clearly stating they lie in a straight line C1 for explaining one is a multiple of the other	н
b		$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$ $9a + 6b - (6a + 4b)$ $= 3a + 2b$ $\overrightarrow{AB} \text{ is } 2 \times \overrightarrow{BC}$	M1 A1		M1 for finding BC A1 for BC cao	
		So AB : BC = 2 : 1	B1 5		B1 for correct ratio	
88 ai		$\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$	B1	2	B1 cao	Н
ii		$\overline{NQ} = \frac{1}{2}\mathbf{b} + \frac{1}{2}(\mathbf{c} - \mathbf{b})$ $= \frac{1}{2}\mathbf{c}$	M1 A1	3	M1 method of finding NQ A1 cao	
iii		$\overrightarrow{MP} = \frac{1}{2}\mathbf{a} + \frac{1}{2}AC$ $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$ $\overrightarrow{MP} = \frac{1}{2}\mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a})$	M1 B1		M1 method of finding MP B1 cao	
		$= \frac{1}{2}\mathbf{c}$	A1		A1 cao	
b		It is a parallelogram, because $\overline{NQ} = MP = \frac{1}{2}c$	B1		B1 for parallelogram	
		and hence they are parallel and equal in length.	C2 9		C1 for stating vectors are parallel C1 for stating vectors will be same length	

89	$\overline{AB} = \mathbf{b} - \mathbf{a},$ $\overline{AC} = \overline{AO} + \overline{OC}$ $= -\mathbf{a} + 3\mathbf{b} - 2\mathbf{a}$ $= 3\mathbf{b} - 3\mathbf{a}$ so $\overline{AC} = 3 \overline{AB}$ and hence ABC is a straight line.	B1 M1 A1 C1 C1 5	2	B1 cao M1 for adding vectors A1 cao C1 for explaining the two vectors are multiples of each other C1 for explaining this gives a straight line	Н
90	The knight can get to all the squares shown. Do not forget that you can use -a and -b as well as a and b. The starting position must match the question (bottom left white square). The lines show all the possible paths of the Knight, using a, b, -a and -b. There are many ways to reach the king. However, there are three ways to get to the king in the minimum of five moves.	C1 C4 5	3	C1 is for a clear diagram to support the explanation, showing all the possible places the knight can move to C1 for explaining there are numerous ways to get to the king C1 for explaining there is a minimum of five moves to get to the king C1 for explaining there are only three ways to get to the king with these 5 minimum moves C1 for a clear cohesive explanation	Н