Global Challenges

Using Materials

You must be able to:

- Compare the properties of a range of materials
- Explain how metals corrode
- Suggest ways to prevent or reduce the corrosion of metals.

Properties of Materials

 Materials are chosen for a specific purpose because of their physical properties, e.g. teapots are made from materials that can hold boiling water without melting.

Metals

- Metals are generally easy to manipulate and extract and can be made into alloys with different properties to the original metals.
- · Some metals are very hard and strong.
- For example, iron (when mixed with other elements to form steels) is used in cars, machine tools and buildings.
- Others metals, such as copper and silver, are ductile and can be used to make wires.

Corrosion

- Most metals will react with oxygen to form a metal oxide. This process is called corrosion.
- Corrosion is an expensive problem, because corroded metal has to be replaced.
- The corrosion of iron (an oxidation reaction) is called rusting it costs billions of pounds per year worldwide.

iron + oxygen + water ---- hydrated iron(III) oxide

- Rusting occurs even faster when iron comes into contact with salt water or acid rain.
- Aluminium is very reactive, but it does not corrode in air and water.
- Atoms on the surface quickly react to form aluminium oxide, which creates a protective barrier.

aluminium + oxygen ------ aluminium oxide

- There are two ways of preventing corrosion:
 - a physical barrier between the metal and water and oxygen
- sacrificial protection.
- Choosing a material to protect a metal depends upon the intended use.
- Painting metal is a common solution (e.g. an iron bridge), as long as the paint is not likely to get chipped.
- Coating metal in plastic is more durable (e.g. chain linked fences).
- Oil and grease is used on objects that move (e.g. bicycle chains).

Key Point

Corrosion damages metals and can make objects unsafe. Finding cheap and effective ways to reduce corrosion preserves the metal and saves money.

Sacrificial protection involves attaching a more reactive metal to the surface of the metal being protected, e.g. attaching zinc or magnesium to iron.

- With the hulls of ships, a block of zinc is attached.
- The more reactive metal reacts and corrodes first, protecting the main metal.
- Galvanising is the process of covering a metal with a layer of zinc.
- This provides a physical barrier and sacrificial protection.

Glass and Clay Ceramics

- Glass is a non-crystalline solid that is transparent or translucent.
- It is made by heating silica with lime and sodium carbonate.
- Glass is unreactive, so it can be used to make bottles to store reactive chemicals, windows and tableware.
- Clay ceramics are made by shaping clay and then heating at a high temperature in an oven.
- Fine clays are used to make plates in a dinner service.
- Clays with a larger particle size are used to make the separators that provide electrical insulation in power lines.

Polymers

• There is a huge range of polymers that are created for different purposes.

Key Point

Revise

There is an extremely large variety of materials available. However, not all will be environmentally friendly and meet the requirements of a life cycle assessment.

Polymer	Properties	Uses
Polythene or poly(ethene)	LightFlexibleEasily mouldedCan be printed on	 Plastic bags – the plastic is flexible and light. Moulded containers – the plastic is easily moulded.
Polystyrene	LightPoor conductor of heat	Insulation – the plastic is a poor conductor of heat.
Polyester	LightweightWaterproofToughCan be coloured	 Clothing – the plastic can be made into fibres, is lightweight, tough, waterproof and can be coloured. Bottles – the plastic is lightweight and waterproof.

Composites

- Composites are mixtures or layers of different materials that are chemically bonded together.
- They are often very strong and durable.
- Examples of composites include:
 - concrete (a mixture of aggregates, sand and cement)
 - carbon composites, used for re-entry shields on spacecraft
- Kevlar[™], used to make bulletproof vests.

Quick Test

- 1. Why are blocks of zinc attached to ships' hulls?
- **2.** Why are iron nails galvanised?
- 3. Suggest why poly styrene is used to make cups.

Key Words

ductile corrosion rusting sacrificial protection ceramics composites

GCSE Chemistry Revision Guide