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A business involved in making and selling particular 
products will have different types of costs. Fixed 
costs include things such as the rent of business 
premises and the cost of machinery and vehicles. 
Marginal costs include the cost of the raw materials 
used in manufacturing a product or the fuel used to 
produce it.

Profi t will vary with the number of products sold and 
that in turn is affected by many things, particularly the 
selling price and the profi t margin on each item.

Economists use mathematical models and equations 
to analyse the connections between these variables, 
and this can help to make sure that the company 
makes a profi t and is able to plan for expansion.

This graph shows how the long-run average cost (LRAC) 
varies with the quantity of a product that is produced.

By differentiating the equation for this curve you can 
determine how varying the quantity produced will 
affect costs.

The minimum point (where the gradient is zero) shows 
the quantity Q that will give the lowest possible average cost.

LEARNING OBJECTIVES

You will learn how to:

 › identify all the types of stationary point on a curve

 › use the chain rule to differentiate a range of functions

 › differentiate exponential and logarithmic functions

 › differentiate sine and cosine functions.

TOPIC LINKS

For this chapter you should be able to differentiate linear combinations of powers of a variable. 
From Book 1, Chapter 7 Exponentials and logarithms you should be familiar with exponential 
functions and their graphs, including those involving the constant e, and be able to manipulate 
functions involving logarithms to base e. From Chapter 5 Trigonometry you should know about 
using radians to measure angles and small angle approximations to sines and cosines.

0
Q

Quantity

LRAC

A
ve

ra
ge

 c
os

t
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This is a graph of y = x5 – 15x3

At a stationary point, the gradient of the 

curve is zero; that is, d
d

y
x = 0.

To fi nd the stationary points, differentiate 
the e quation.

 
d
d

y
x

x x= −5 454 2

When d
d

y
x

= 0, 5x4 – 45x2 = 0.

Divide by 5 and factorise.

 x4 – 9x2 = 0

 x2(x2 − 9) = 0

 x2(x − 3)(x + 3) = 0 so x = 0, 3 or –3 

You can see on the graph that at these points the gradient is 0.

These stationary points are (0, 0), (3, −162) and (−3, 162).

(−3, 162) is a maximum point. The y-coordinate at this point is less 
than the y-coordinates at nearby points. The gradient of the curve 
changes sign from positive to negative as you go past that point.

(3, −162) is a minimum point. The y-coordinate at this point is less 
than the y-coordinates at nearby points. At this point, the gradient 
changes from negative to positive.

(0, 0) is a point of infl ection. The gradient at neighbouring points 
on either side is negative.

6.1 Turning points

y

–100

–200

100

200

1 2 3 4–1–2–3–4 0 x–4–4

PRIOR KNOWLEDGE

You should already know how to:

 › identify maximum and minimum points on a graph

 › work out any power of a variable, including fractional and negative indices

 › sketch graphs of y = ekx and y = ln x

 › use radian measure for angles

 › use small angle approximations for sin q and cos q .

You should be able to complete the following questions correctly:

1 Find the stationary points of the graph of y = x3 – 6x2 and identify whether they are 
maximum or minimum points.

2 Show that if a is small then cos 2a ≈ 1 − 2a  2.

3 Differentiate with respect to x: 

a 2x(x2 − 1) b x
x

2 1
2

−  c 1
x

M  Modelling  PS  Problem solving  PF  Proof  CM  Communicating mathematically

A section of a curve that has 
increasing gradient (positive 
second derivative) is known 
as concave upwards, and a 
section of a curve that has 
decreasing gradient (negative 
second derivative) is known 
as concave downwards. 

108
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An alternative to judging the type of stationary point by eye is to 
use the second derivative.

 
d
d

2y
x

x x2
320 90= −

When x = −3, d
d

2y
x2 270= −  < 0, which confi rms this is a maximum 

point.

When x = 3, d
d

2y
x2 270=  > 0, which confi rms this is a minimum point.

When x = 0, 
d
d

2y
x2 0= . At a point of infl ection the second derivative is 

always 0. However, this is not conclusive and the point could be 
a maximum, a minimum or a point of infl ection. Look at the value 
of the gradient on either side of the point to decide which it is.

There are two types of stationary points that are points of 
infl ection, illustrated by A and B on the upper graph.

The lower graph shows the curve y = x4.

The origin is clearly a minimum point but d
d

2y
x

x2
212= , which is 0 

when x = 0.

Here is a summary:

Value of 
d
d

2

2
y

x
negative positive zero

Type of stationary point maximum 
point

minimum 
point

cannot 
tell

At the point of infl ection, 
the curve changes from 
concave upwards to concave 
downwards (or vice versa), 
so the second derivative at 
this point is zero.

y

1

2

3

1 2 3–1 0 x

A

B

22

y

1

2

3

1 2–1 0 x

Exercise 6.1A Answers page 446

 1 Find the stationary point of the graph of y = 16 + 10x – x2 and state, with a reason, whether 
it is a maximum or a minimum point.

 2 a Show that the graph of y = x3 – 3x2 + 3x – 20 has just one stationary point.

  b Find its coordinates and show that it is a point of inflection.

 3 Find and describe the stationary points for the graph of f(x) = x4 – 2x2.

 4 a Show that the graph of y = x3 has a point of inflection at the origin.

  b Describe any stationary points for the curve y = (x − 10)3 + 20. Justify your answer.

 5 y = ax2 + bx + c, a ≠ 0, is a curve.

  Show that it must have a stationary point, which can be a maximum or a minimum but 
not a point of inflection.

 6 The sides of a cuboid are x cm, x cm and (9 – 2x) cm.

  a Show that the total length of all the edges is 36 cm.

  b  Show that the volume is a maximum when the shape is a cube.

  c  Show that the total surface area is also a maximum when 
the shape is a cube.

 1 

 2 a 

  b   b 

 3 

 4 a 

  b   b 

PF  5 

  

 6 

  a 

  b 

  c 

PS

x cm 

x cm 

(9 – 2x) cm

PF

6.1 
Turning points
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If you need to differentiate a function such as y = (2x + 3)3 and fi nd 
d
d

y
x

, one way is to multiply out the bracket and then differentiate 

each term. That will take a lot of work. Is there a better way?

You can break the function into two parts by writing y = u3 where 
u = 2x + 3.

Both of these are easy to differentiate: 
d
d

y
u u= 3 2 and d

d
u
x = 2.

How does this help? Remember that to differentiate from fi rst 
principles you increase the variable by a small amount.

Suppose δx is a small increase in x – then both u and y will change. 
There will be a small change, δu, in u, and a small change, δy, in y.

The derivatives are 
d
d

y
x

y
xx

=
→

lim
δ

δ
δ0

, 
d
d

y
u

y
uu

=
→

lim
δ

δ
δ0

 and dd
u
x

u
xx

=
→

lim
δ

δ
δ0

Now we can write δ
δ

δ
δ

δ
δ

y
u

y
u

u
x= ×

Then lim
δ

δ
δx

y
x→0

 = lim
δ

δ
δ

δ
δx

y
u

u
x→

×
0

 = lim lim
δ δ

δ
δ

δ
δu x

y
u

u
x→ →

×
0 0

 

So d
d

d
d

d
d

y
x

y
u

u
x= ×

Using this formula in our example:

 d
d

y
u

u= 3 2 and d
d

u
x = 2 so 

d
d

y
x

u u= × =3 2 62 2

The fi nal step is to replace u with 2x + 3, which gives

 
d
d

y
x x= +6 2 3 2( )

With practice you can use this method without actually writing 
down u.

Think of it is as y = (bracket)3 where the bracket stands for 2x + 3.

Think of it as: Write it as:

y = (bracket)3 y = (2x + 3)3

d
d

d
d bracket

d bracket
d

y
x

y
x= ( ) × ( ) d

d
y
x x= + ×3 2 3 22( )

= +6 2 3 2( )x

This method is called the chain rule and it greatly increases the 
number of functions that you can differentiate.

This is just the ordinary rule 
for multiplying fractions, 
since δx, δu and δy are just 
numbers and the δu cancels.

KEY INFORMATION
If y = f(u) and u = g(x) then 
d
d

d
d

d
d

ydyd
x

ydyd
u

u
x

= ×= ×
d

= ×
d

y= ×y

6.2 The chain rule

Example 1
Differentiate y

x
=

+
4

12 .

Solution
Method 1

Write it as y = 4(x2 + 1)−1 = 4u−1 where u = x2 + 1.

110
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Exercise 6.2A Answers page 446

 1 Find d
d

y
x

 in the following cases:

  a y = (4x + 2)2  b y = (4x + 2)3  c y = (4x + 2)5 

 2 Differentiate with respect to x:

  a (8 − x)10  b (1 + 3x2)10 c (6x – 3x2)10

 3 Find f′(x) in the following cases:

  a f x x( ) = − 3  b f x x( ) = −2 3 c f x x( ) = −2 3

 4 The equation of this curve is y
x

= +
20

2
, x > 0.

  a Find the gradient at (2, 5).

  b Find the coordinates of the point where the gradient is −0.2.

 5 The equation of this curve 
is y

x
=

+
600

502 .

  a  Show that the point (10, 4) is on 
the curve.

  b Find d
d

y
x

.

  c  Find the equation of the tangent 
at (10, 4).

 1 

  a 

 2 

  a 

 3 

  a   a 

 4 

  a 

  b   b 

y

5

10

5 10 15 200 x

  a 

  b 

  c 

y

5

10

5 10 15 20–5–10–15–20 0 x

Then d
d

y
u

u
u

= × − × = −−4 1 42
2

 and d
d

u
x x= 2 .

Multiply these.

 d
d

y
x u

x x
u

x
x

= − × = − = −
+

4 2 8 8
12 2 2 2( )

Method 2

If you do not use u explicitly, think of it as y = 4(bracket)−1 

so that d
d

d(bracket)
d

y
x x

= × − × ×−4 1 2(bracket)  

and write d
d

y
x x x x

x
= − + × = −

+
−4 1 2 8

1
2 2

2 2( )
( )

 as before.

Use whichever method you are more comfortable with.

You will probably want to introduce u at fi rst and you should 
fi nd you can do without it as you become more confi dent.

Stop and think Would you have been able to differentiate the function in Example 1 if you had 
not known about the chain rule?

6.2 
The chain rule
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Here is a proof that if y = ex then d
d

ey
x

x= .

Suppose x increases by a small amount, δx, and y changes by 
δy = ex+δx – ex.

 δ
δ δ δ

δ δy
x x x

x x x x x
= − = −+e e e e( )1

 
d
d

e e ey
x

y
x xx x

x x
x

x
= = − =

→ →
lim lim ( ) lim

δ δ

δ

δ

δ
δ δ0 0

1
→→

−
0

1eδ

δ
x

x

So what is lim
δ

δ

δx

x

x→

−
0

1e ?

Here is a table of values, rounded to 4 decimal places:

δx 0.1 0.01 0.001

e 1δ

δ
x

x
− 1.0517 1.0050 1.0005

It is reasonable to assume that lim
δ

δ

δx

x

x→

−
0

1e  = 1.

Therefore d
d e ey

x x
x

x

x
= −

→

δ

δ

δ

δlim
0

1 = ex

This means that for any point on the graph of y = ex, the gradient is 
just the y-coordinate.

If y = ekx where k is a constant, then you can fi nd 
d
d

y
x  by using the 

chain rule.

If u = kx and y = eu then

 d
d

d
d

d
d e ey

x
y
u

u
x k ku kx= × = × =

If you multiply the function by a constant, the derivative is 
multiplied by the constant in the usual way.

If y = cekx, then d
d ey

x ck kx= .

PROOF
Factorising the expression 

for δδ
yδyδ
x

 leads you to consider 

a simpler limit.

KEY INFORMATION
If y = ex then dd eydyd

x
x= , or if 

f(x) = ex then f ′(x) = ex.

KEY INFORMATION
If y = ekx then d

d eydyd
x k kx= , or if 

f(x) = ekx then f′(x) = kekx.

6.3 Differentiating ekx

Example 2
Find the gradient of the curve y = 10e−0.3x at the point where x = 5.

Solution
If y = 10e−0.3x then d

d
e ey

x
x x= − × = −− −0 3 10 30 3 0 3. . . .

When x = 5, d e ey
xd = − = − = −− × −3 3 0 6690 3 5 1 5. . .  to 3 d.p.

Sometimes exponential functions are written in the form akx, 
where a is not e but a different number. Example 3 shows you how 
to differentiate such an expression.
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Exercise 6.3A Answers page 446

 1 Find d
d

y
x

 in the following cases:

  a y = e2x  b y = e−x  c y = e0.4x d y = e4x + 2

 2 Work out f′(x) in the following cases:

  a f(x) = 4e0.5x b f(x) = 100e−0.1x c f(x) = 50e2x − 10

 3 a Write 1.5x in the form ekx where k is a constant.

  b If y = 1.5x, find d
d

y
x

.

 4 f(x) = 4e2x

  Find:

  a f′(x) b f″(x)

 5 The equation of this curve is = −y 4e x0.5 2
.

  a Find d
d

y
x

.

  b  Find the gradient at the point where the 
x-coordinate is −2.

 1 

  a 

 2 

  a 

 3 a 

  b 

 4 

  

  a   a 

y

1

2

3

4

1 2 3–1–2–3 0 x

4

 5 

  a 

  b 

Example 3
The population of a city, y millions, in x years’ time is predicted 
to be given by the formula

 y = 5 × 1.02x

Find the expected rate of increase in 4 years’ time.

Solution
You need to fi nd the value of 

d
d

y
x  when x = 4.

If 1.02 = ea then a = ln 1.02 and so 1.02 = eln 1.02.

That means y = 5 × (eln 1.02)x = 5e(ln 1.02)x

Therefore d
d

y
x

x x= =5 1 02 5 1 02 1 021 02(ln . ) (ln . ) .(ln . )e

When x = 4, d
d

y
x = =5 1 02 1 02 0 1074(ln . ) . .  to 3 d.p.

The expected rate of increase is 107 000 to 3 s.f.

This uses the usual rule for 
combining indices.

The units are millions per 
year.

Here is the general method.

If you want to differentiate = akx, use the fact that a = eln a and write 
the expression as a power of e.

If y = akx = (eln a)kx = e(ln a)kx

then d
d ey

x k a a kx= (ln ) (ln )  = k a akx(ln )

KEY INFORMATION

If y = xkx then d
d

ydyd
x

 = k(ln a) akx.

6.3 
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 6 A saver invests £5000 at an annual rate of 3% compound interest.

  a Show that after t years the value is £5000 × 1.03t.

  b Write 5000 × 1.03t in the form 5000eat.

  c Find the rate at which the savings are increasing when t = 3.

 7 f(x) = e2x + e−2x

  Show that f″(x) = 4f(x).

 8 The equation of a curve is y = ex + 4e−x.

  Show that the curve has a minimum point and find its coordinates.

M  6 

  a 

  b 

  c 

 7 PS

PS  8 

  

On the right is a graph of y = ln x.

On the same axes is a graph of y = ex.

Because fi nding e to a power and fi nding ln are inverse 
operations, the graph of y = ln x is a refl ection of the 
graph of y = ex in the line y = x.

Suppose you want to fi nd the gradient of the curve 
y = ln x at the point A.

y

1

2

3

4

5

1 2 3 4 5–1 0 x

y = x 

y = ln x 

y = ex 
E F

D
C

BA

0

The tangent at A has been drawn; its gradient is CB
AB .

DEF is a refl ection of ABC in the line y = x so CB
AB

FE
DE= .

But FE
DE DE

FE
-coordinate of= =1 1

y D because DE
FE

 is the gradient of 

y = ex at the point D, which is just ex or the y-coordinate.

Because of the refl ection, the y-coordinate of D is the x-coordinate 
of A.

This gives the result that if y = ln x then d
d

y
x x

= 1 .
KEY INFORMATION
If y = ln x then d

d
ydyd
x x

= 1

6.4 Differentiating in ax

y

–1

–2

1

2

3

1 2 3 4–1–2 0 x

y = x 

y = ln x 

y = ex 

0
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Exercise 6.4A Answers page 447

 1 Differentiate with respect to x:

  a ln 3x b ln x3 c ln (x3 + 2)

 2 Find d
d

y
x

 in the following cases:

  a y = 4 ln x b y = ln 4x c y = ln x4

 3 a On the same axes, sketch the graphs of y = ln x and y = ln 2x.

  b Find the vector for the translation that maps the graph of y = ln x onto y = ln 2x.

  c f(x) = ln kx where k is a positive constant, x > 0.

   Show that ′ =f ( )x
x
1 .

  d How are your answers to parts b and c related?

 1 

  a 

 2 

  a   a 

 3 

  b 

  c 
  

  d   d 

Example 4
Differentiate: a ln(2x + 3) b ln x2

Solution
a Use the chain rule:

 If y = ln(2x + 3) then 
d
d

y
x x x= + × = +

1
2 3 2 2

2 3
b Either use the chain rule:

 If y = ln x2 then 
d
d

y
x x

x x
x x= × = =1 2 2 2

2 2

 Or use the properties of logarithms:

 ln x2 = 2 ln x

 So d
d

y
x x x= × =2 1 2 , which is the same result.

Using the fact that 
ln ak = k ln a.

Example 5
Find the equation of the tangent to the curve y = ln (x + e) at the 
point (0, 1).

Solution
Use the chain rule to fi nd d

d
y
x

.

 y = ln u and u = x + e

 d
d

y
u u= 1  and d

d
u
x = 1

 d
d

d
d

d
d

y
x

y
u

u
x u x= × = × = +

1 1 1
e

At (0, 1), x = 0 so d
d e

y
x = 1

The equation of the tangent is y x− = −1 1 0e( )

 y x= +e 1

6.4 
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 4 This is a graph of the curve y = ln (x + 5):

  

y

–1

–2

1

2

1 2 3 4–1–2–3–4–5 0 x

  a Find the equation of the tangent to the curve at the point where it crosses the x-axis.

  b Find the equation of the tangent to the curve at the point where it crosses the y-axis.

 5 a Show that the point (e, 1) is on the graph of the curve y = ln x.

  b Show that the tangent to the curve y = ln x at (e, 1) passes through the origin.

  c Show that the normal to the curve y = ln x at (e, 1) crosses the x-axis at e
e

+ 1 .

 6 a Find 
d
d

y
x

 when y
x

= ln10 .

  b Find d
d

y
x

 when y
x

= ln 10
2 .

  c  Generalise your results of parts a and b to find d
d

y
x

 when y
xn= ln 10  where n is a 

positive integer.

 7 =y xlog10

  Show that d
d

y
x x

= 1
10ln

.

 4 

  

  a 

  b 

 5 a 

  b 

  c   c 

PS

PF  6 

  b 

  c 

 7 

  

PS

In this section you will fi nd the derivatives of sin x and cos x.

Suppose y = sin x.

If δx is a small increase in the value of x and δy is the 
corresponding change in y, then

d
d

y
x

y
xx

=
→

lim
δ

δ
δ0

δy = sin (x + δx) − sin x

so δ
δ

δ
δ

y
x

x x x
x

=
+( ) −sin sin

Use the addition formula, sin (x + δx) = sin x cos δ x + cos x sin δx.

δ
δ = δ + δ −

δ
y
x

x x x x x
x

sin cos cos sin sin
See Chapter 5 Trigonometry 
for more on the addition 
formulae.

6.5 Differentiating sin x and cos x from fi rst principles
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Factorise the numerator.

δ
δ = δ + δ −

δ
y
x

x x x x
x

cos sin sin (cos 1)

Write the expression as two separate fractions.

δ
δ

δ
δ

δ
δ

y
x x x

x x x
x= 



 + −



cos sin sin cos 1

d
d

y
x

 is the limit of this as δx → 0.

d
d

y
x

y
x x x

xx x
= = 



 +

→ →
lim lim cos sin si

δ δ

δ
δ

δ
δ0 0

nn cosx x
x

δ
δ

−













1

= + −
→ →

cos lim sin sin lim cosx x
x x x

xx xδ δ

δ
δ

δ
δ0 0

1

From Chapter 5 Trigonometry you should remember that if q is 
small then sin q ≈ q and θ θ≈ −cos 1 1

2
2 .

Use these to give the approximations sin δx ≈ δx and 

( )δ ≈ − δx xcos 1 1
2

2 .

 sinδ
δ

x
x

≈ 1  and cosδ
δ δx

x x− ≈1 1
2

 lim sin
δ

δ
δx

x
x→

=
0

1  and lim cos lim
δ δ

δ
δ δ

x x

x
x x

→ →

− ≈ =
0 0

1
2

1 0

Hence the result is 
d
d

y
x

x= cos .

This gives the very simple result that if y = sin x then 
d
d

y
x

x= cos .

You can differentiate y = cos x from fi rst principles in a similar way.

δ
δ

δ
δ

y
x

x x x
x

= + −cos( ) cos

 = δ − δ −
δ

x x x x x
x

cos cos sin sin cos

 ( )= δ − − δ
δ

x x x x
x

cos cos 1 sin sin

= δ −
δ − δ

δδ → δ →

y
x x

x
x x

x
x

d
d cos lim

cos 1
sin lim

sin
x x0 0

Which means that d
d

y
x

x= −sin .

So if y = cos x, d
d

y
x

x= −sin .

KEY INFORMATION
 › If y = sin x, then d

d
ydyd
x

x= cos .

 › If y = cos x, then d
d

ydyd
x

x= −sin .

Stop and think Would this result still be true if the angle was in degrees rather than in radians?

6.5 
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Exercise 6.5A Answers page 447

 1 Find d
d

y
x

 in the following cases:

  a y = sin 2x b y = cos (5x − 2) c y = sin (x2 + 1)

 2 Differentiate with respect to x:

  a 10 sin 0.5x b sin 3x + cos 6x c cos(x2 – 3x − 4)

 3 f(x) = sin 4x + cos 4x

  Show that f″(x) + 16f(x) = 0

 4 a Show that the derivative of sin2 x is sin 2x.

  b Find the derivative of cos2 x.

  c Explain the relationship between your answers to parts a and b.

 5 This is a graph of y = esin x.

  

y

1

2

3

–1 1 2 3 4 5 6–2–3–4–5–6 0 x

  a Find the gradient at the point (0, 1).

  b  Prove that the graph has a stationary point at π
2 ,e( ) .

 6 A bob on the end of a long string is a pendulum making small oscillations.

  The displacement, y metres, of the bob after t seconds is given by y = 0.1 sin 2.4t.

  a Find the speed of the bob when t = 1.

  b Find the position of the bob when the speed is zero.

  c Find the position of the bob when the acceleration is zero.

 1 

  a 

 2 

  a 

 3 

PF  4 

  b 

  c 

 5 

  
  a 

  b   b 

M  6 

  

  a 

  b 

  c   c 

y 

Example 6
Differentiate with respect to x:

a 2 sin 4x b cos 3x2

Solution
Use the chain rule in both cases.

a  d
d

y
x

x x= × =2 4 4 8 4cos cos

b d
d

y
x

x x x x= − × = −sin sin3 6 6 32 2
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Key points and Exam-style questions
6

SUMMARY OF KEY POINTS

 › If f′(x) = 0 and f″(x) > 0 then the curve has a minimum point. If f′(x) = 0 and f″(x) < 0 then the curve 
has a maximum point.

 › The chain rule: if y = f(u) and u = g(x) then d
d

d
d

d
d

ydyd
x

ydyd
u

u
x= ×= ×d= ×d

y= ×y .

 › If y = ekx then d
d

eydyd
x

kekekx= .

 › If y = ln x then 
d
d

ydyd
x x

= 1 .

 › If y = sin x then d
d

ydyd
x

x= cos ; if y = cos x then 
d
d

ydyd
x

x= −sin .

EXAM-STYLE QUESTIONS 6 Answers page 448

 1 The equation of a curve is y = (x − 10)3 + 15.

  a Find d
d

ydyd
x

 and d
d

2

2
y

x
. [3 marks]

  b Show that the curve has a point of inflection and find its coordinates. [3 marks]

 2 = += +y xy x= +y x= += +y x= +1= +1= += +y x= +1= +y x= + 2

  Show that 
d
d

ydyd
x

x
y= . [4 marks]

 3 f( ) cosx x= 1

  Show that =f (′f (′ ) tan
cos

x x
x

. [4 marks]

 4 Differentiate with respect to x:

  a y = e−2x [2 marks]

  b y x= −e
2
 [2 marks]

 5 The equation of a curve is y = ln x2, x > 0.

  Find the coordinates of the point on the curve where the gradient is 0.5. [5 marks]

 6 Here are attempts by two students to differentiate sin (x + 2):

Student A Student B

y = sin (x + 2)

= sin x + sin 2

So

d
d

= cos +0
y
x

x

= cos x

y = sin (x + 2)

Use the addition formula.

y = sin x cos 2 + cos x sin 2

So

d
d = cos cos2 sin sin2y

x x xcox xcos2x xs2 six xsin sx xn sx x−x x

  Is either student correct? Give a reason for your answer. [4 marks]

 1 

  a 

  b 

 2 

  

 3 

  

 4 

  a 

  b   b 

 5 

  

 6 

  

CM
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 7 The area covered by a colony of bacteria on a flat surface is 10 mm2.

  The area y mm2, in t hours’ time is modelled by the formula y = 10 × 21.5t.

  a Show that the area will double in size in 40 minutes. [2 marks]

  b Find the area in 3 hours’ time. [2 marks]

  c Find the rate at which the area will be increasing in 3 hours’ time. [6 marks]

  d Why might the model no longer be valid after several hours? [1 mark]

 8 The equation of this curve is y = 0.1ex + e−0.5x.

  The curve has a minimum point. Find its 
coordinates. [7 marks]

 9 The equation of a curve is y = 20.5x + 3.

  Find the equation of the tangent to the curve where it crosses the y-axis. [4 marks]

 10 The equation of a curve is y = x3 + 3x2 + 4x + 5.

  a Show that the curve has no stationary points. [2 marks]

  b  The curve has a point of inflection.

   Find the equation of the tangent at this point. [2 marks] 

 11 The equation of a curve is y = aekx where a and k are constants.

  The point (10, 20) is on the curve and the tangent at that point passes through 
(0, –5) on the y-axis.

  Find the values of a and k. [4 marks]

 12 y = sin3 x

  a Show that 
d
d

ydyd
x

x x= −3 3= −3 3= − 3x x3x x3 3co3 3= −3 3= −co= −3 3= −x xs cx x3 3s c3 3x x3 3x xs cx x3 3x x= −3 3= −s c= −3 3= −x x= −x x3 3x x= −x xs cx x= −x x3 3x x= −x xx xosx x. [4 marks]

  b Show that 
d
d

2y
x

x x2
3x x3x x6 9= −6 9= −6 9si6 9si6 96 9= −6 9si6 9= −6 9x xn sx x6 9n s6 9x x6 9x xn sx x6 9x x6 9= −6 9n s6 9= −6 9x x6 9x x= −x x6 9x xn sx x6 9x x= −x x6 9x xinx xinx x. [4 marks]

 13 The equation of a curve is y = 10 cos 5(x – 20)°. 

  Find the maximum and minimum values of the gradient of this curve. [4 marks]

 14 The equation of this curve is y
x= −

e
1
2

2

  The point P has x-coordinate a.

  Show that the tangent at P crosses the 
x-axis at (a + 

a
1

Show that the tangent at P crosses the 
1

Show that the tangent at P crosses the 
, 0). [4 marks]

 15 y = sin 2x 

  Prove from first principles that 
y
x

dydy
d  = 2 cos 2x. [5 marks]

M  7 

  

  a 

  b 

  c 

  d 

 8 

  

 9 

  

 10

  a 

  b 

  

 11 

  

y

0 x

CM

PF  12 

  a 

  b 

 13 

  

 14 

  

  

 15 PF

y

x

P××

0
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