
 2 OSCILLATION
know that MRI is a medical application of an effect 
called ‘nuclear magnetic resonance’ (NMR). Resonance 
is all about effi ciently transferring energy from one 
vibrating system to another. It occurs in many areas 
of physics and in everyday life, from lasers to musical 
instruments. In NMR, a nucleus, in the presence of a 
very strong magnetic fi eld, is able to gain energy by 
absorbing radio-frequency electromagnetic radiation 
(typically 60 to 1000 MHz).

Figure 1 MRI scan image of the human brain

When a patient has an MRI scan, he or she is 
required to lie down inside a large tube-shaped 
chamber. A powerful magnetic fi eld is activated in the 
chamber, enabling the transfer of energy from the 
radio-frequency radiation to hydrogen nuclei (protons) 
in specifi c body tissues. The controlled de-excitation 
of the protons enables the mapping of the tissue, in 
terms of the hydrogen atoms present.

PRIOR KNOWLEDGE

You will be familiar with Hooke’s law (Chapter 12 of 
Year 1 Student Book) and know what is meant by the 
spring constant. You will have experience of using 
equations for elastic potential energy, gravitational 
potential energy and kinetic energy, and understand 
the principle of conservation of energy (Chapter 11 of 
Year 1 Student Book). You may want to refresh your 
memory about stationary waves on strings and in 
pipes (see section 5.6 of Chapter 5 of Year 1 Student 
Book). You will need to know how to determine sine 
and cosine values for angles expressed in radians. You 
will have already studied circular motion (Chapter 1 of 
this book) as a type of periodic motion.

LEARNING OBJECTIVES

In this chapter you will extend your knowledge of 
periodic motion to include oscillations and resonance. 
You will learn that many natural systems oscillate with 
simple harmonic motion (SHM), and you will analyse 
such motion graphically. You will fi nd out about forced 
vibration in mechanical systems, and the effect of 
damping. You will have the opportunity to learn how to 
analyse experimental data using logarithms.

(Specifi cation 3.6.1.2 to 3.6.1.4)

Many people have heard of ‘MRI’ and know that it is 
a type of scan that a person may have in hospital to 
help in the diagnosis and treatment of an injury or 
illness (Figure 1). Some people will know that MRI 
stands for ‘magnetic resonance imaging’, but few will 
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The graph of displacement versus time for any SHM, 
in which the displacement is at its maximum value 
at t = 0, is shown in Figure 3. The equation of the 
graph is

x A t= cos( )ω

Here A is amplitude of the oscillation, which is the 
maximum displacement, and w is a constant defined by 

ω = 2π
T

, where T is the constant time period, which is 

the time for one cycle of oscillation. A cycle corresponds 
to the oscillating mass moving through any position 
then passing through that same position again in the 
same direction. For example, the mass at P in Figure 3 
has displacement X. It passes through the equilibrium 
position, moves to one extreme, then to the other 
extreme, and then at Q has the same displacement X 
and moves in the same direction. Thus P to Q is one 
cycle. The number of cycles of oscillation per second  
is the frequency, f, measured in hertz (Hz = s−1),  

which is related to the time period by f = 1
T

. Therefore 

w can also be written as ω = 2πf . It is called the 
angular frequency of the oscillation and is measured 
in rad s−1.
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Figure 3  Displacement versus time graph (cosine curve) for SHM 
with x = A when t = 0

The equation x A t= cos( )ω  representing the 
displacement of an object oscillating with SHM is 
correct provided the object is at an extreme position 
when the oscillation starts to be monitored – so, 
when t = 0, x = A. However, if the oscillating object is 
passing through its mean position when the oscillation 
starts to be monitored, then at t = 0, x = 0, and the 
graph of displacement versus time is a sine curve 
(Figure 4) x A t= sin( )ω , not a cosine curve.

2.1 SIMPLE HARMONIC MOTION
Oscillations and vibrations are a type of periodic 
motion. The motion repeats in a regular way as 
time passes. An object ‘oscillates’ when it repeatedly 
moves backwards and forwards about an equilibrium 
position. This mechanical oscillation (as opposed to 
the oscillation of fields, as in an electromagnetic wave) 
requires the action of a resultant force that is always 
directed towards the equilibrium position. The resultant 
force in this type of motion is often referred to as the 
restoring force, and the distance and direction of the 
oscillating object from its equilibrium position are its 
displacement, x.

Imagine holding a spring vertically, with a mass 
attached to its lower end. Initially, it is stationary – it 
is in equilibrium. If you pull the mass downwards, a 
restoring force acts upwards. When the mass moves up 
above its equilibrium position, the restoring force acts 
downwards. The result is an oscillatory motion in which 
the displacement x varies periodically.

A special kind of oscillation is simple harmonic 
motion (SHM):

In simple harmonic motion (SHM), the restoring force 
is directly proportional to the displacement, and in the 

opposite direction.

The repeated up-and-down motion of a mass on a 
spring is an example of SHM and can be monitored 
using data logging equipment connected to a motion 
sensor (Figure 2). Computer analysis of the data shows 
that the displacement versus time graph is a cosine (or 
sine) curve.

oscillating masses

motion
sensor

mesh guard
data logger

helical spring

Figure 2  A motion sensor with data logger and computer for analysis 
of the oscillatory motion of a mass on a spring 
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We can describe these differences in terms of phase 
differences. Phase difference can be expressed in 
terms of fractions of a cycle, or degrees or radians. 
To find the phase difference, for example between 
the displacement and the velocity, determine the 
time that elapses between each quantity being at a 
maximum. The phase difference in terms of a fraction 
of a cycle can then be found by dividing the time that 
elapses by the time period. Conversion to degrees or 
radians can be made by equating a full cycle to 360° 
or 2π radians. A comparison of the displacement and 
velocity graphs of Figure 5 shows a phase difference 
of a quarter of a cycle (90° or π / 2 rad) between 
the displacement and the velocity (see section 5.2 in 
Chapter 5 of Year 1 Student Book).

A comparison of the displacement and acceleration 
graphs reveals a phase difference of half of a cycle 
(180° or π  rad) between these two quantities – they 
achieve their maximum values at the same instant but 
have opposite directions. 

Simple harmonic motion is defined by the equation

a x= −ω2

where a is the acceleration, x is the displacement of 
the oscillating object and w  is the angular frequency, 
which is a constant for the motion. The equation 
shows that the acceleration is directly proportional 
to displacement but in the opposite direction. The 
maximum value for the acceleration is given by

a Amax = ω2

since the amplitude A is the maximum displacement.

The velocity of an object moving with SHM is given by

v f A x= ± −2 2 2π

with the maximum velocity v fA Amax = =2π ω , since 
the velocity is at its greatest at the equilibrium 
position which corresponds to x = 0.

A graph of acceleration a versus displacement x for 
an object oscillating with SHM (Figure 6) is a straight 
line through the origin with a gradient equal to −w  2. 

Since, for a constant mass, acceleration is directly 
proportional to the resultant force (from Newton’s 
second law, F = ma), the restoring force is directly 
proportional to the displacement but in the opposite 
direction. Therefore a graph of the restoring force 
versus displacement would be a straight line through 
the origin with a gradient equal to −mw  2, where m is 
the mass of the oscillating object.
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Figure 5  Displacement, velocity and acceleration versus time graphs for a simple harmonic 
oscillator
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Figure 6  Acceleration versus displacement for an object moving with SHM
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Figure 4  Displacement versus time (sine curve) for SHM with x = 0 
when t = 0

QUESTIONS

1.	 Plot a displacement–time graph to show 
three cycles of an oscillation that has an 
amplitude of 6.0 mm and a frequency of 
5000 Hz, assuming that displacement is a 
maximum when t = 0.

2.	 An object is oscillating with SHM. Assuming 
that its displacement x = 0 when t = 0, 
calculate the displacement after 0.24 ms if 
the amplitude is 6 mm and the frequency is 
5000 Hz.

3.	 Sketch two cycles of a displacement versus 
time graph in which x = 0 when t = 0 for an 
oscillation of time period 0.5 s and amplitude 
10 cm, showing appropriate scales on both 
axes.

Velocity and acceleration in SHM
Since velocity is defined as the rate of change of 
displacement, a graph of velocity versus time shows the 
variation with time of the gradient of the displacement–
time graph (Figure 5). Similarly, an acceleration versus 
time graph can be obtained from the gradient of the 
velocity–time graph. A comparison of the graphs of 
displacement, velocity and acceleration versus time 
reveals the relationships between these three quantities 
during the oscillation (Figure 5).

›	 The velocity of the oscillating mass is zero when 
displacement is at a maximum, and at its greatest 
when displacement is zero.

›	 The acceleration is zero when the displacement 
is zero, and at its greatest when displacement is 
a maximum.
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20  The opt ional  topics can be downloaded at  www.col l ins.co.uk/physics/sb2modules

97642_P018_038.indd   20 10/02/16   1:12 PM



We can describe these differences in terms of phase 
differences. Phase difference can be expressed in 
terms of fractions of a cycle, or degrees or radians. 
To find the phase difference, for example between 
the displacement and the velocity, determine the 
time that elapses between each quantity being at a 
maximum. The phase difference in terms of a fraction 
of a cycle can then be found by dividing the time that 
elapses by the time period. Conversion to degrees or 
radians can be made by equating a full cycle to 360° 
or 2π radians. A comparison of the displacement and 
velocity graphs of Figure 5 shows a phase difference 
of a quarter of a cycle (90° or π / 2 rad) between 
the displacement and the velocity (see section 5.2 in 
Chapter 5 of Year 1 Student Book).

A comparison of the displacement and acceleration 
graphs reveals a phase difference of half of a cycle 
(180° or π  rad) between these two quantities – they 
achieve their maximum values at the same instant but 
have opposite directions. 

Simple harmonic motion is defined by the equation

a x= −ω2

where a is the acceleration, x is the displacement of 
the oscillating object and w  is the angular frequency, 
which is a constant for the motion. The equation 
shows that the acceleration is directly proportional 
to displacement but in the opposite direction. The 
maximum value for the acceleration is given by

a Amax = ω2

since the amplitude A is the maximum displacement.

The velocity of an object moving with SHM is given by

v f A x= ± −2 2 2π

with the maximum velocity v fA Amax = =2π ω , since 
the velocity is at its greatest at the equilibrium 
position which corresponds to x = 0.

A graph of acceleration a versus displacement x for 
an object oscillating with SHM (Figure 6) is a straight 
line through the origin with a gradient equal to −w  2. 

Since, for a constant mass, acceleration is directly 
proportional to the resultant force (from Newton’s 
second law, F = ma), the restoring force is directly 
proportional to the displacement but in the opposite 
direction. Therefore a graph of the restoring force 
versus displacement would be a straight line through 
the origin with a gradient equal to −mw  2, where m is 
the mass of the oscillating object.
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Figure 6  Acceleration versus displacement for an object moving with SHM
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Worked example
A mass attached to a spring vibrates up and down, 
undergoing SHM with a time period of 1.6  s. The 
distance from the top to the bottom extreme positions 
is 8.0 cm. Determine the maximum acceleration 
and the speed of the mass as it passes through the 
equilibrium position.

Since, for SHM, acceleration a x= −ω2 , the maximum 
acceleration is

a A
T

Amax = = 

 


ω2

22π

The value of the amplitude A is half the distance from 
one extreme position to the other, so A = 4.0 cm. 
Therefore

amax ms= 

 


 × = −2

1 6
0 040 0 62

2
2π

.
. .

Velocity v f A x= ± −2 2 2π , but at the equilibrium 
position, x = 0 and the velocity has its maximum 
value:

v f A
T

Amax ms= = = × = −2 2 2
1 6

0 040 0 162 1π π π
.

. .

QUESTIONS

4. The piston of a car engine moves with a 
motion that is approximately SHM. One 
cycle of motion takes 0.017 s and the piston 
moves through a total distance of 100 mm. 
Calculate the maximum acceleration of the 
piston and its velocity at a distance of 20 mm 
from its equilibrium position.

5. Determine the acceleration of an object 
oscillating with SHM at a frequency of 2.0 Hz 
when its displacement is 0.20 m.

6. A graph of acceleration versus displacement 
for an object moving with SHM is shown in 
Figure 7.
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−200
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−400

Figure 7

a. Determine the gradient of the line 
and write an equation showing the 
relationship between the object’s 
acceleration and its displacement.

 b.  How would the magnitude of the gradient 
change if the oscillating system was 
changed so that the frequency was 
doubled?

KEY IDEAS

 › SHM is an oscillation in which the acceleration 
(a) is directly proportional to the displacement 
(x) but in the opposite direction:

a xa x= −a xωa xωa x2a x2a x

 where w is the constant angular frequency of 
the motion.

 › The displacement versus time graph of an 
oscillating object is a sine or cosine curve 
depending on whether the displacement is zero 
or at its maximum value at time t = 0.

 › The velocity versus time graph can be 
determined from the gradient of the 
displacement versus time graph.

 › The acceleration versus time graph can be 
determined from the gradient of the velocity 
versus time graph.

2 OSCILLATION
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Consider a spring that is initially suspended vertically 
but has no mass attached (Figure 8a). A mass m 
is then attached to the spring, extending it by an 
amount denoted by e (Figure 8b), with the mass then 
being at rest in its equilibrium position. Since the 
mass is at rest under the action of both the force of 
gravity, mg, and the tension in the spring ke, it follows 
that ke = mg.

Displacing the mass below its equilibrium position and 
then releasing it allows the mass to oscillate about its 
equilibrium position. The instant that the mass passes 
though the point that is a distance x below equilibrium 
is represented by Figure 8c. At this instant, the 
extension of the spring is given by e x+  and the 
tension in the spring is k e x( )+ .

Ignoring the effects of air resistance on the oscillating 
mass, the resultant upward force F on the mass is 
equal to the tension minus the weight, which gives 
the equation

F k e x mg= + −( )

However, since ke mg= , the expression for the 
resultant force becomes  F kx= .

T = k(e + x) 

mg

(c)
Mass pulled down a
distance x and released 

T = ke

mg

(b)
Mass in equilibrium

(a)
Unloaded spring

spring
constant

 k

extension e

x

Figure 8 The forces acting on a mass–spring system

2.2 SIMPLE HARMONIC SYSTEMS
The mass–spring system
So why does a mass oscillating on the end of a spring 
move with SHM? First, here is a reminder of Hooke’s 
law: ‘The extension of a spring is directly proportional 
to the force applied provided the elastic limit has not 
been exceeded’. We can express this as

F k l= ∆

where k is the spring constant and ∆l is the 
extension (see section 12.2 in Chapter 12 of Year 1 
Student Book).

 › The maximum velocity occurs as the object 
passes through the equilibrium position and is 
given by

v Amav Amav Axv Axv Av A=v Aωv Aωv A

 where A is the amplitude (maximum 
displacement) of the oscillation.

 › The maximum acceleration occurs at the 
extremes of the oscillation and is given by

a Amaa Amaa Axa Axa Aa A=a Aωa Aωa A2a A2a A

Since the resultant force is upwards when the 
displacement is downwards, the resultant force is 
written as

F kx= −

From Newton’s second law (F = ma), the acceleration 
of the oscillating mass is therefore

a k
m x= −
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Given that k
m

 is constant, this shows that the 

acceleration of an oscillating mass is directly 
proportional to its displacement but in the opposite 
direction – which conforms to the defi nition of SHM.

Comparing the SHM defi ning equation a x= −ω2  with 

a k
m x= −  shows that ω2 = k

m. Substituting ω = 2π
T

 

into the equation gives 2 2π
T

k
m



 


 =  , which rearranges 

to give the equation for the time period of a mass–
spring system:

T m
k

= 2π

Worked example
A family car has a mass of 1000 kg when it is not 
loaded. This mass is supported equally by four 
identical springs. When the car is fully loaded, its mass 
goes up to 1250 kg and the springs compress by a 
further 2 cm. When the car goes over a bump in the 
road, it bounces on its springs. Find the time period of 
these oscillations.

The equation for the period of a mass–spring 
system is

T m
k

= 2π

We know the mass of the system, but we need to 
calculate the spring constant, k.

The extra weight of 250 kg × 9.81 N kg−1 = 2450 N will 
depress the four springs by 0.02 m.

Assuming each of the identical springs carries a 
quarter of the extra weight, 2450/4 = 613 N, we can 
use Hooke’s law, F k l= ∆ , to fi nd the spring constant k 
of one spring:

k F
l

= = = × −

∆
613
0 02

3 06 104 1

.
.   Nm

Since the effective mass oscillating on each spring is 
1250/4 = 313 kg, the time period T of the oscillation 
of the car is

 
.    

.T m
k

= =
×

=2 2 313
3 06 10

0 644π π s

QUESTIONS

7. A mass of 250 g is attached to a spring with 
a spring constant of 30 N m−1. Determine the 
time period if the mass was displaced so that 
the mass–spring system oscillated.

8. Four identical springs, each with a spring 
constant of 40 N m−1, are arranged so that 
two are joined in series (Figure 9a) and the 
other two in parallel (Figure 9b). A mass of 
500 g is attached to both arrangements.

(a) (b)

Figure 9 Oscillating systems made up of springs 
(a) in series and (b) in parallel

 Determine the time period of oscillation of 
the arrangement of two springs

a. in series

b. in parallel.

 [Hint: Combining two springs in series halves 
the spring constant. Combining two springs 
in parallel doubles the spring constant.]

 9.  Determine the phase difference in radians 
between two identical mass–spring 
systems, each with a time period of 1.2 s, if 
one system’s oscillations are started 0.4 s 
before the other.

10.  A mass of 200 g oscillates with a time 
period of 1.46 s when attached to a spring. 
Calculate the spring constant.

11. An oscillating mass–spring system has a time 
period T. If the mass is then doubled and the 
spring replaced so that the spring constant is 
halved, what is the new time period?

  A 2 T    B 2T   C T
2

   D T
2
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Required practical
2.2
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respect to the equilibrium position because this does 
not change, whereas the extreme positions change as 
the oscillation loses energy.

The mass should be raised and then released so that 
it starts oscillating. Once the oscillation is established, 
the digital stopwatch should be started as the mass 
passes the fi ducial marker. Twenty cycles of oscillation 
are then counted and the stopwatch should be 
stopped as the mass passes the fi ducial marker 
completing its 20th cycle of oscillation. Two repeat 
measurements are taken and the average of the 
three measurements is calculated. The time period is 
determined by dividing the average time for 20 cycles 
of oscillations by 20. The process is repeated using a 
range of masses.

Analysis

The time period equation for the mass–spring system 

T m
k

= 2π  can rewritten as

T
k

m2
24= π

which can be compared with the equation of a straight 
line y mx c= +  (where m here is the constant 
gradient, not the variable mass). If a graph of T 2 as 
the y variable and mass m as the x variable is plotted 
with an origin (0, 0), then the theory predicts that the 

REQUIRED PRACTICAL: APPARATUS AND 
TECHNIQUES
Part 1: Investigation into simple harmonic 
 motion using a mass–spring system

The aim of this practical is to test the equation 

T m
k

= 2π  and obtain a value for k, by carrying out 

measurements of time period for various masses 
attached to a helical spring. This practical gives you 
the opportunity to show that you can:

› use appropriate digital instruments to obtain a range 
of measurements (to include time)

› use methods to increase the accuracy of 
measurements, such as timing over multiple 
oscillations, or use of a fi duciary marker

› use a stopwatch for timing.

There are a number of ways of measuring the 
time period, including using digital or analogue 
stopwatches, light gates, or a motion sensor with 
a data logger. The method described here involves 
timing oscillations using a digital stopwatch and a 
fi ducial marker.

Apparatus

A digital stopwatch with a precision of ±0.01s 
is used, and a fi ducial marker to help with 
counting oscillations.

A helical spring is clamped securely and supported by 
a stand (Figure P1). A fi ducial marker in the form of 
an optical pin is inserted into a cork and supported in 
a clamp and stand. The purpose of this is to indicate 
the mean (equilibrium) position of the oscillation. A 
range of standard masses are used, accurate to within 
±2 g and suitable for the choice of spring.

Techniques

Once a mass has been attached to the spring, 
the fi ducial marker is aligned with the equilibrium 
position of the mass–spring system to enable 
accurate counting of cycles of oscillation. One cycle 
of oscillation corresponds to the mass passing the 
equilibrium position, moving to one extreme, passing 
the equilibrium position again, moving to the other 
extreme, then back to the equilibrium position. 
Although a full cycle also corresponds to the mass 
moving from one extreme to the other extreme and 
then back again, it is better to count oscillations with 

oscillating masses

helical spring

optical
pin

cork

clamp

clamp

Figure P1 Set-up for the oscillating mass–spring experiment
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QUESTIONS

P1 Discuss whether reaction time error when 
measuring the time for 20 oscillations is 
random or systematic.

Mass attached, 
including hanger, 
m / kg

Time 
for 20 cycles, 
20T1 / s

Repeat time 
for 20 cycles, 
20T2 / s

Repeat time 
for 20 cycles, 
20T3 / s

Average time for 
20 cycles, 20T / s

Time 
period, 
T / s

0.150 9.86 9.64 9.72 9.74

Table P1The simple pendulum

graph should be a straight line through the origin. The 

gradient of the line is equal to 4 2π
k

, which enables a 

value for the spring constant k to be determined.

The uncertainty in the time for 20 oscillations for 
a particular mass can be found from half of the 
range of the repeat measurements. The presence 
of reaction time error suggests that the uncertainty 
in the time for 20 oscillations cannot be less than 
typically ± 0.2 s. The uncertainty in time period T is 
found by dividing the uncertainty in 20 oscillations 
by 20. The percentage uncertainty in T can then be 
calculated. The percentage uncertainty in T 2 is twice 
the percentage uncertainty in T (see section 1.4 in 
Chapter 1 of Year 1 Student Book).

The uncertainty in the value of standard masses of 50 
or 100 g is typically about ± 2 g. As more masses are 
added to the hanger, this uncertainty accumulates, 
but the percentage uncertainty for the total mass is 
unchanged. The uncertainties in T 2 and m enable error 
bars to added to the points on the T 2 versus m graph, 
so that the best line, and the steepest gradient and 
the shallowest gradient lines that fi t within the error 
bars can be drawn.  The percentage uncertainty in the 
value of k is equal to the percentage uncertainty in the 
gradient which can be calculated from

 percentage uncertainty best gradient worst= − gradient
best gradient

× 100%

 percentage uncertainty best gradient worst= − gradient
best gradient

× 100%

where the worst gradient is whichever of the steepest 
or shallowest gradient values differs from the best 
gradient by the largest amount.

P2 A student measures time periods for a 
mass–spring system for various masses 
using the method described. One of her 
data sets is shown in Table P1. The repeat 
times for 20 cycles and the average time 
for 20 cycles have been recorded to the 
same precision as the digital stopwatch 
that was used to measure them.

a. i.  Determine the uncertainty in 
the average time for 20 cycles 
from the range of the three 
20T measurements.

 ii.  How does your value from part i 
compare with a typical reaction time 
error of ± 0.2 s?

b. Suggest an appropriate value for the 
uncertainty in time period T based on 
your answers to parts a i and ii, and 
record T to the appropriate number of 
signifi cant fi gures.

c. i.  The student decides to plot her full 
set of data in the form of a graph 
of T 2  versus mass and then obtain 
a value for the spring constant k. 
What would be the uncertainty in the 
plotted value of T2 for the data set 
shown in Table P1?

 ii.  What source(s) of uncertainty would 
have the greatest effect on the 
maximum and minimum gradients, 
and hence the uncertainty in k?

 iii.  Would this still be the case if only 
10 oscillations had been counted?

P3 Suggest whether or not a method using a 
motion sensor and data logger would give a 
more reliable test of the period–mass 
relationship and a more accurate value of k.
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The simple pendulum
The simple pendulum, consisting of a length of thread 
with a metal ball called a bob attached, usually made 
of lead or brass, has been an object of scientific study 
since the 17th century. Galileo is generally considered 
to be the first to observe that the time period of a 
swinging pendulum remained constant even as the 
oscillations died away (Figure 10). Another 17th 
century Italian astronomer, Giovanni Riccioli, devised a 
technique based on the oscillations of a pendulum to 
obtain the first accurate value for the acceleration due 
to gravity.

Figure 10  A model of Galileo’s proposed design for a pendulum 
clock. Galileo realised that a swinging pendulum could be used for 
time-keeping. This was a major step in the history of the development 
of clocks.

A free-body force diagram of an oscillating simple 
pendulum (Figure 11) shows that the forces acting on 
the pendulum bob are the tension T in the string and 
the weight W of the bob, assuming that air resistance 
is negligible.

length lmass m
T

W sin  

W = mg

W cos  

θ

θ

−x

negative
direction

positive
direction

θ θ

The displacement x is
around an arc of a circle. 

Figure 11  The forces acting on the bob of a simple pendulum

The weight of the bob is resolved into two components 
(see section 10.3 in Chapter 10 of Year 1 Student 
Book), one parallel to the tension and the other at 
90° to the tension. Since the displacement x of the 
bob is actually along the arc of a circle with radius 
equal to the length l of the pendulum, the angle θ in 
radians is equal to x

l
. The restoring force F is provided 

by the component of the bob’s weight that acts at 90° 
to the tension, and therefore

F W mg= =sin  sinθ θ

The small-angle approximation states that, for 
small angles (<10°), sinθ θ≈  in radians. If this is 
applied to the above equation, the expression for the 
restoring force becomes

F mg= θ

Substituting θ = x
l
 gives F mg x

l= . But since the 

restoring force is always in the opposite direction to 
the displacement, the expression for the restoring 
force becomes

F mg x
l= −
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From Newton’s second law, the acceleration of the 
oscillating pendulum is therefore

a g
l x= −

This equation shows that the acceleration of an 
oscillating simple pendulum of constant length is 
directly proportional to and in the opposite direction 
to its displacement, providing only small-amplitude 
oscillations are considered. In other words, the simple 
pendulum oscillates with SHM.

Comparing a g
l x= −  with the defi ning equation for 

SHM, a x= −ω2 , shows that ω2 = g
l . Substituting 

ω = 2π
T  into the equation gives 2 2π

T
g
l



 


 =  , which 

rearranges to give the equation for the time period 
T of a simple pendulum:

T l
g

= 2π

The theory shows that the time period of a simple 
pendulum depends only on its length l provided 
angles of swing are less than about 10°. The mass of 
the pendulum bob has no effect on the time period 
provided the bob’s mass is much greater than the 
mass of the string it is attached to. Although air 
resistance will remove energy from the oscillation, 
causing the amplitude to decrease, the time period of 
the oscillation is unaffected.

QUESTIONS

12.   Calculate the length of a simple pendulum 
that would have a time period of 1.0 s.

13.   A simple pendulum has a time period of 
T. What would be its new time period if its 
length is doubled?

     A 2T    B 2 T    C T
2

   D T
2

KEY IDEAS

 › The equation for time period T of a mass–spring 
system is

T m
k

= 2π

 › The equation for the time period T of a simple 
pendulum for small-amplitude oscillations is

T l
g

= 2π
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