## 1 Number: Number skills and properties

### 1.1 Solving real-life problems

### **HOMEWORK 1A**

- 1 25 × 12 = 300 + 60 (20%) = 360. He buys 384 tiles, so he has enough.
- 2 No.  $\pm 30 \div 85p = 35.29$ , so she can buy 35 packets of balloons, which is only 875.
- Yes, the shop covers its costs, as 10% is £11, so £110 + £11 = £121 per TV. Rental is £3.50 × 40 weeks = £140 (£140 - £110 = £30 profit per TV)
- **4** 27
- **5** £728
- 6 No. 860 ÷ 15 = 57.333... weeks, which is more than one year
  Or: £860 ÷ 52 = £16.54 per week to save enough for one year
  Or: £15 × 52 weeks = £780 saved in a year; £860 £780 = £80 short ÷ £15 = 5.333... more weeks to save
- **7** £2664
- 8 Mutya earns £60 each week. Neil earns £210 each week. Mutya will need to work for four weeks to earn over £210.
- 9 No, Mary is €30 short. She has enough money for only three presents.
   £504 ÷ 36 = £14 per person per ticket. Mary has £150 £14 = £136.
   £136 × €1.25 = €170
- **10** 1536
- **11** 23
- **12 a** £1000 **b** £912
- **13 a** 28 m<sup>2</sup> **b** £10.71
- **14** 28
- **15** Comparing over one year, 52 ×38 = 1976; 12 × 150 =1800 So stock is decreasing

### 1.2 Multiplication and division with decimals

#### **HOMEWORK 1B**

| 1 | а | 0.2 | 25   | b  | 7.56                 | С   | 5.04   |
|---|---|-----|------|----|----------------------|-----|--------|
|   | d | 1.6 | 8    | е  | 3.9                  |     |        |
| 2 | а | i   | 8    | ii | 8.88, 0.88           |     |        |
|   | b | i   | 15   | ii | 14.88, 0.12          |     |        |
|   | С | i   | 20   | ii | 21.42, 1.42          |     |        |
|   | d | i   | 21   | ii | 16.25, 4.75          |     |        |
| 3 | а | 24  | 0    |    |                      |     |        |
|   | b | i   | 2.4  | ii | 2.4                  | iii | 7.2    |
| 4 | а | 24  | .48  | b  | Subtract 3.4 (answer | 21. | 08)    |
| 5 | а | 17  | .25  | b  | 48                   |     |        |
| 6 | а | 43  | .68  | b  | 78.6                 | С   | 29.92  |
|   | d | 18  | 8.25 | е  | 867.2                |     |        |
| 7 | а | £2  | 2.08 | b  | £5.76                | С   | £31.50 |

| 8   | 20     |                        |     |                         |       |        |
|-----|--------|------------------------|-----|-------------------------|-------|--------|
| 9   | а      | 16                     |     |                         |       |        |
|     | b      | i 160                  | ii  | 0.16                    | iii   | 0.16   |
| 10  | 19     | .74 ÷ 2.1 (Answer 9.4. | Thi | s is approximately 20 ÷ | - 2 : | = 10)  |
|     |        |                        | _   |                         |       |        |
| 1.3 | 3 A    | pproximation of ca     | lcu | lations                 |       |        |
| HC  | )ME    | WORK 1C                |     |                         |       |        |
| 1   | а      | 50 000                 | b   | 60 000                  | С     | 30 000 |
|     | d      | 90 000                 | е   | 90 000                  | f     | 50     |
|     | g      | 90                     | h   | 30                      | i     | 100    |
|     | j      | 200                    | k   | 0.5                     | I     | 0.3    |
|     | m      | 0.006                  | n   | 0.05                    | ο     | 0.0009 |
|     | р      | 10                     | q   | 90                      | r     | 90     |
|     | S      | 200                    | t   | 1000                    |       |        |
| 2   | He     | llaby: 850 to 949      |     |                         |       |        |
|     | Ho     | ok: 645 to 654         |     |                         |       |        |
|     | Hu     | ndleton: 1045 to 1054  |     |                         |       |        |
| 3   | а      | 6700                   | b   | 36 000                  | С     | 69 000 |
|     | d      | 42 000                 | е   | 27 000                  | f     | 7000   |
|     | g      | 2200                   | h   | 960                     | i     | 440    |
|     | j      | 330                    |     |                         |       |        |
| 4   | а      | 50 000                 | b   | 6200                    | С     | 89.7   |
|     | d      | 220                    | е   | 8                       | f     | 1.1    |
|     | g      | 730                    | h   | 6000                    | i     | 67     |
|     | j      | 6                      | k   | 8                       | I     | 9.75   |
|     | m      | 26                     | n   | 30                      | ο     | 870    |
|     | р      | 40                     | q   | 0.085                   | r     | 0.0099 |
|     | S      | 0.08                   | t   | 0.0620                  |       |        |
| 5   | 95     | or 96                  |     |                         |       |        |
| 6   | 65     | 0 –549 = 101           |     |                         |       |        |
| 7   | 63     |                        |     |                         |       |        |
| нс  | ME     | WORK 1D                |     |                         |       |        |
| 1   | а      | 30,000                 | b   | 24                      | c     | 8      |
| •   | ď      | 900                    | e   | 125                     | f     | 0 42   |
|     | a      | 60 000                 | h   | 5600                    | •     | 0      |
| 2   | ə<br>a | 200                    | b   | 40                      | с     | 800    |
| _   | d      | 40 000                 | e   | 15 000                  | f     | 2000   |
|     | a      | 150                    | h   | 52 500                  |       |        |
| 3   | a      | 37 800                 | b   | 180                     |       |        |
| 4   | 20     | × 80 000 = 1 600 000;  | 60  | 00 × 300 = 1 800 000:   |       |        |
|     | 50     | 0 × 7000 = 3 500 000;  | 10  | 000 × 900 = 9 000 000   | )     |        |
|     |        |                        |     |                         |       |        |

**5** 100 000 km ( $\frac{400000}{8}$  × 2; i.e. to and from Earth)

### HOMEWORK 1E

| а    | 28 000                                                                                                   | b                                                                                                                                                                                                                                                                                                                                                                         | 42 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d    | 20 000                                                                                                   | е                                                                                                                                                                                                                                                                                                                                                                         | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| g    | 5                                                                                                        | h                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| j    | 75                                                                                                       | k                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| а    | £4000                                                                                                    | b                                                                                                                                                                                                                                                                                                                                                                         | £2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| а    | £30 000                                                                                                  | b                                                                                                                                                                                                                                                                                                                                                                         | £36 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| £14  | 400                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ye   | s. £50 ÷ 250 = 20p per                                                                                   | ар                                                                                                                                                                                                                                                                                                                                                                        | ple; he pays only £47 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷ 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 = 18.8p per apple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| а    | 105 km                                                                                                   | b                                                                                                                                                                                                                                                                                                                                                                         | 450 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5000 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 li | tres                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| £1(  | 0 (£20 ÷ 2)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ME   | WORK 1F                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| а    | 1.62 m                                                                                                   | b                                                                                                                                                                                                                                                                                                                                                                         | 20 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| d    | 1.2 °C                                                                                                   | е                                                                                                                                                                                                                                                                                                                                                                         | 24 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25   | jars                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 65   | minutes to 2 sf                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| £14  | 40 a day (45 weeks × {                                                                                   | 5 da                                                                                                                                                                                                                                                                                                                                                                      | iys a week = 225 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; £3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 500 ÷ 225 = £140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| £2   | 17                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | a<br>d<br>g<br>j<br>a<br>a<br>£14<br>Ye<br>a<br>6<br>li<br>£10<br><b>ME</b><br>a<br>d<br>25<br>£14<br>£2 | <ul> <li>a 28 000</li> <li>d 20 000</li> <li>g 5</li> <li>j 75</li> <li>a £4000</li> <li>a £30 000</li> <li>£1400</li> <li>Yes. £50 ÷ 250 = 20p per</li> <li>a 105 km</li> <li>6 litres</li> <li>£10 (£20 ÷ 2)</li> </ul> <b>MEWORK 1F</b> <ul> <li>a 1.62 m</li> <li>d 1.2 °C</li> <li>25 jars</li> <li>65 minutes to 2 sf</li> <li>£140 a day (45 weeks × 5)</li> </ul> | a       28 000       b         d       20 000       e         g       5       h         j       75       k         a       £4000       b         a       £30 000       b         £1400       Yes. £50 ÷ 250 = 20p per ap       a         a       105 km       b         6 litres       £10 (£20 ÷ 2)         DMEWORK 1F       a       1.62 m         a       1.62 m       b         d       1.2 °C       e         25 jars       65 minutes to 2 sf         £140 a day (45 weeks × 5 da         £217 | a       28 000       b       42 000         d       20 000       e       2000         g       5       h       9         j       75       k       50         a       £4000       b       £2000         a       £30 000       b       £36 000         £1400       Yes. £50 ÷ 250 = 20p per apple; he pays only £47       a         a       105 km       b       450 km         6 litres       £10 (£20 ÷ 2)       b       20 minutes         d       1.2 °C       e       24 000         25 jars       65 minutes to 2 sf       £140 a day (45 weeks × 5 days a week = 225 days         £217       b       225 days | a       28 000       b       42 000       c         d       20 000       e       2000       f         g       5       h       9       i         j       75       k       50       l         a       £4000       b       £2000       c         a       £30 000       b       £36 000       c         £1400       Yes. £50 ÷ 250 = 20p per apple; he pays only £47 ÷ 25       a       105 km       b         4       105 km       b       450 km       c       c         6       litres       £10 (£20 ÷ 2)       b       20 minutes       c         d       1.2 °C       e       24 000       25 jars       c         65 minutes to 2 sf       £140 a day (45 weeks × 5 days a week = 225 days; £3       £217 |

- 6 I left home at 10 minutes past 2, and walked for 50 minutes. The temperature was 13 °C. I could see an aeroplane overhead at 3000 feet. Altogether I had walked three miles.
- **7** 70 mph

## 1.4 Multiples, factors, prime numbers, powers and roots

### HOMEWORK 1G

| 1 | а | 28, 36, 64, 56, 60 |   |       |   |     |
|---|---|--------------------|---|-------|---|-----|
|   | b | 60, 15, 45         |   |       |   |     |
|   | С | 19, 43, 53, 29, 61 |   |       |   |     |
|   | d | 36, 60, 15, 45     |   |       |   |     |
| 2 | 3 |                    |   |       |   |     |
| 3 | а | -6                 | b | -9    | С | -10 |
|   | d | -30                | е | –19   | f | -13 |
|   | g | –15                | h | -1000 | I | -21 |
|   | j | -35                |   |       |   |     |
| 4 | а | 2                  | b | 4     | С | 5   |
|   | d | 10                 | е | 30    | f | -3  |
|   | g | -1                 | h | -6    | I | -20 |
|   | j | -7                 |   |       |   |     |

5

|   |                              |          | Squ | are number | Factor of 40 |      |  |  |  |
|---|------------------------------|----------|-----|------------|--------------|------|--|--|--|
|   | Cube number<br>Multiple of 5 |          |     | 64 8       |              |      |  |  |  |
|   |                              |          |     | 25         | 2            | 0    |  |  |  |
| 6 | 21                           | 97 (13³) |     |            |              |      |  |  |  |
| 7 | 18                           |          |     |            |              |      |  |  |  |
| 8 | а                            | ±0.6     | b   | ±0.9       | С            | ±1.3 |  |  |  |
|   | d                            | ±0.3     | е   | ±0.1       | f            | ±1.2 |  |  |  |
|   | g                            | ±1.5     | h   | ±1.4       | I            | ±2.1 |  |  |  |
|   | j                            | ±3.5     |     |            |              |      |  |  |  |

## 1.5 Prime factors, LCM and HCF



6 The number 7 is the third odd prime number and is therefore a factor of 105.

#### **HOMEWORK 1I**

| 1 | а  | 35              | b | 24             | С | 18                    |
|---|----|-----------------|---|----------------|---|-----------------------|
|   | d  | 60              | е | 30             | f | 48                    |
|   | g  | 48              | h | 105            |   |                       |
| 2 | а  | 7               | b | 9              | С | 5                     |
|   | d  | 5               | е | 12             | f | 36                    |
|   | g  | 18              | h | 33             |   |                       |
| 3 | а  | x <sup>5</sup>  | b | x <sup>9</sup> | С | <i>x</i> <sup>7</sup> |
|   | d  | x <sup>10</sup> | е | x <sup>9</sup> |   |                       |
| 4 | 13 | 55              |   |                |   |                       |

- **5** 1296
- 6 Three packs of nuts and two packs of bolts
- 7 10 and 15

## 7.3 Negative numbers

### **HOMEWORK 1J**

| 1  | а   | -68                     |      |                     |   |                   |
|----|-----|-------------------------|------|---------------------|---|-------------------|
|    | b   | 68°                     |      |                     |   |                   |
|    | С   | 6 × 4                   |      |                     |   |                   |
| 2  | а   | -8                      | b    | -18                 | С | -35               |
|    | d   | 12                      | е    | 16                  | f | 7                 |
|    | g   | 4                       | h    | -5                  | Т | 2                 |
|    | j   | 2                       | k    | -21                 | I | –18               |
|    | m   | -28                     | n    | 27                  | ο | 14                |
|    | р   | -7                      | q    | -4                  | r | -5                |
|    | S   | 5                       | t    | -25                 | u | 24                |
|    | v   | -7                      | w    | -63                 | х | 6                 |
|    | у   | -56                     |      |                     |   |                   |
| 3  | а   | 2                       | b    | 3                   | С | 2                 |
|    | d   | -7                      | е    | -10                 | f | –12               |
|    | g   | –12                     | h    | 30                  | I | -8                |
|    | j   | -4                      | k    | -4                  | I | 3                 |
|    | m   | 3                       | n    | -12                 | 0 | -9                |
|    | р   | 32                      | q    | 15                  | r | -48               |
|    | S   | –12                     | t    | 52                  | u | –11               |
|    | v   | 48                      | w    | -2                  | X | -20               |
|    | У   | 1                       |      |                     |   |                   |
| 4  | а   | -5                      | b    | 6                   | С | –10               |
|    | d   | 20                      | е    | –15                 |   |                   |
| 5  | -1  | 8 ÷ 12; 0.3 × (–2); –21 | ÷ (· | –14); –0.5 × (–4)   |   |                   |
| нс | ОМЕ | WORK 1K                 |      |                     |   |                   |
| 1  | а   | -12                     | b    | -8                  | с | 6                 |
|    | d   | 36                      | е    | 15                  | f | 6                 |
|    | g   | 12                      | h    | -9                  |   |                   |
| 2  | a   | 23                      | b    | -4                  | С | –1                |
|    | d   | -4                      | е    | –17                 | f | 10                |
|    | g   | -2                      | h    | -7                  |   |                   |
| 3  | а   | 4x(-3+2) = -4           | b    | (–6 ÷ (–3)) + 2 = 4 | С | -6 ÷ (-3 + 2) = 6 |
| 4  | а   | 4                       | b    | -49                 | С | -8                |
|    | d   | 50                      |      |                     |   |                   |
| 5  | а   | 159                     | b    | 2                   | С | - 39              |
|    | d   | 9                       |      |                     |   |                   |
| 6  | Fo  | r example: –4 × 6 ÷ 8   | = _3 | 3                   |   |                   |

- 7 For example:  $(1 + 2) \times (3 6) = -9$
- **8**  $(1+2) \times (3 \div 4) 5 = 2.75$

## **Functional Maths Activity**

#### **Flooring specialist**

1 Examples of costing tables are shown below.

| Flooring<br>type | Material required | Material<br>cost (£) | Labour<br>cost (£) | Job cost<br>(£) | Job cost<br>per m² (£) |
|------------------|-------------------|----------------------|--------------------|-----------------|------------------------|
| Carpet tiles     | 10 packs          | 18.90                | 83.48              | 102.38          | 4.29                   |
| Plain carpet     | 9 m               | 12.51                | 95.40              | 107.91          | 4.52                   |
| Luxury<br>carpet | 9 m               | 26.91                | 95.40              | 122.31          | 5.13                   |
| Wood<br>(beech)  | 14 packs          | 214.20               | 202.73             | 416.93          | 17.48                  |
| Wood (oak)       | 14 packs          | 315.00               | 202.73             | 517.73          | 21.71                  |
| Ceramic tiles    | 41 packs          | 143.09               | 155.03             | 298.12          | 12.50                  |

| Flooring type | Waste m <sup>2</sup> | Waste cost (£) | Fraction of<br>material cost<br>wasted, % |
|---------------|----------------------|----------------|-------------------------------------------|
| Carpet tiles  | 1.15                 | 0.87           | 4.6                                       |
| Plain carpet  | 12.15                | 4.22           | 33.7                                      |
| Luxury carpet | 12.15                | 9.08           | 33.7                                      |
| Wood (beech)  | 3.66                 | 31.11          | 14.5                                      |
| Wood (oak)    | 3.66                 | 45.75          | 14.5                                      |
| Ceramic tiles | 0.75                 | 4.36           | 3.0                                       |

- 2 She can afford to lay a luxury carpet.
- **3** Answers may vary, but further properties that students could consider are comfort, appearance, warmth, and so on.
- 4 Student's answers will vary and will depend on the properties being sought.

## 2 Number: Fractions and percentages

### 2.1 One quantity as a fraction of another

```
HOMEWORK 2A
```

```
1 a \frac{1}{4} b \frac{1}{3} c \frac{1}{2}

d \frac{7}{15} e \frac{3}{7} f \frac{1}{6}

2 \frac{3}{8}

3 \frac{8}{13}

4 Mark saves \frac{40}{120} = \frac{1}{3}

Bev saves \frac{60}{150} = \frac{2}{5} which is greater than \frac{1}{3}, so Bev saves the greater proportion of his earnings

5 \frac{7}{10} = \frac{14}{20}, so Sally's mark is better

6 \frac{1}{5}
```

```
7 34 to 37
```

## 2.2 Adding and subtracting fractions

### **HOMEWORK 2B**

| 1  | а              | 7<br>10                                                                            | b               | 5<br>6                                       | C           | $\frac{13}{30}$ |
|----|----------------|------------------------------------------------------------------------------------|-----------------|----------------------------------------------|-------------|-----------------|
|    | d              | 17<br>24                                                                           | е               | 19<br>20                                     | f           | 11<br>15        |
|    | g              | <del>39</del><br>40                                                                | h               | <del>9</del><br>10                           |             |                 |
| 2  | а              | $\frac{3}{4}$                                                                      | b               | $\frac{1}{2}$                                | С           | 7<br>10         |
|    | d              | 7<br>8                                                                             |                 |                                              |             |                 |
| 3  | а              | 1<br>8                                                                             | b               | 3<br>10                                      | с           | 7<br>15         |
|    | d              | 7<br>20                                                                            |                 |                                              |             |                 |
| 4  | а              | $1\frac{3}{8}$                                                                     | b               | $1\frac{1}{10}$                              | С           | $1\frac{1}{12}$ |
|    | d              | $1\frac{5}{12}$                                                                    |                 |                                              |             |                 |
| 5  | а              | 1<br>12                                                                            | b               | 36                                           |             |                 |
| 6  | 1<br>10        |                                                                                    |                 |                                              |             |                 |
| 7  | 13             | 125                                                                                |                 |                                              |             |                 |
| 8  | 97             |                                                                                    |                 |                                              |             |                 |
| 9  | $\frac{5}{12}$ | + $\frac{1}{4}$ + $\frac{1}{3}$ = $\frac{5}{12}$ + $\frac{3}{12}$ + $\frac{4}{12}$ | $\frac{1}{2}$ = | $\frac{12}{12} = 1$                          |             |                 |
| 10 | То             | make a 2-m pipe, use                                                               | two             | $\frac{3}{4}$ -m pipes and one $\frac{1}{2}$ | <u>-</u> -m | pipe            |

| 2.3      | 2.3 Multiplying fractions  |                                    |      |                         |      |                           |  |  |  |  |
|----------|----------------------------|------------------------------------|------|-------------------------|------|---------------------------|--|--|--|--|
| НС       | ME                         | WORK 2C                            |      |                         |      |                           |  |  |  |  |
| 1        | а                          | $\frac{1}{3}$                      | b    | 3<br>10                 | С    | $\frac{3}{10}$            |  |  |  |  |
|          | d                          | 2<br>7                             | е    | 5<br>9                  | f    | 1<br>5                    |  |  |  |  |
|          | g                          | <u>7</u><br>15                     | h    | $\frac{3}{20}$          | i    | $\frac{1}{6}$             |  |  |  |  |
|          | j                          | <del>7</del><br>20                 |      |                         |      |                           |  |  |  |  |
| 2        | $2\frac{1}{4}$             | km                                 |      |                         |      |                           |  |  |  |  |
| 3        | $\frac{2}{5}$              |                                    |      |                         |      |                           |  |  |  |  |
| 4        | $\frac{1}{20}$             | metre                              |      |                         |      |                           |  |  |  |  |
| 5        | $\frac{1}{16}$             |                                    |      |                         |      |                           |  |  |  |  |
| 6        | $\frac{1}{3}$              |                                    |      |                         |      |                           |  |  |  |  |
| 7        | а                          | 3                                  | b    | $2\frac{1}{3}$          | С    | 2                         |  |  |  |  |
|          | d                          | $2\frac{1}{6}$                     | е    | $5\frac{1}{5}$          | f    | $4\frac{2}{3}$            |  |  |  |  |
|          | g                          | $4\frac{1}{12}$                    | h    | 12                      |      |                           |  |  |  |  |
| 8        | $\frac{2}{3}$              | of $4\frac{2}{5} = 2\frac{14}{15}$ |      |                         |      |                           |  |  |  |  |
| 9        | Ye                         | s: 66 litres                       |      |                         |      |                           |  |  |  |  |
| 10       | $\frac{1}{24}$             |                                    |      |                         |      |                           |  |  |  |  |
| 11<br>12 | Th<br>40                   | e first statement is inad<br>0     | ccur | ate as two-thirds is no | t an | exact number (of people). |  |  |  |  |
| 2.4      | 2.4 Dividing by a fraction |                                    |      |                         |      |                           |  |  |  |  |

## HOMEWORK 2D

| 1 | а       | 3<br>5                                 | b | $1\frac{3}{5}$     | С | $1\frac{1}{5}$  |
|---|---------|----------------------------------------|---|--------------------|---|-----------------|
|   | d       | <del>9</del><br>14                     | е | $2\frac{2}{3}$     | f | $1\frac{4}{11}$ |
|   | g       | $4\frac{4}{7}$                         | h | $4\frac{4}{5}$     | i | $4\frac{1}{8}$  |
|   | j       | <b>2</b> <sup>13</sup> / <sub>16</sub> | k | $1\frac{1}{4}$     | I | $\frac{64}{75}$ |
| 2 | 48      |                                        |   |                    |   |                 |
| 3 | 15      |                                        |   |                    |   |                 |
| 4 | 80      |                                        |   |                    |   |                 |
| 5 | 2<br>15 |                                        |   |                    |   |                 |
| 6 | 4       |                                        |   |                    |   |                 |
| 7 | 23      |                                        |   |                    |   |                 |
| 8 | а       | $\frac{3}{20}$                         | b | <del>7</del><br>16 | С | $\frac{1}{2}$   |

| А | 1 | • | 25 | f | 1 |
|---|---|---|----|---|---|
| u | 1 | C | 33 |   |   |

### 2.5 Increasing and decreasing quantities by a percentage

### HOMEWORK 2E

| 1 | а  | £84   | b | 14.84 kg | С | £43.26 |
|---|----|-------|---|----------|---|--------|
| 2 | а  | 374 g | b | 67.2 m   | С | £49.20 |
| 3 | £3 | 5 568 |   |          |   |        |

- **4** 15 336
- **5** 907
- **6** £15
- **7**  $\frac{6}{40} \times 100 = 15$
- 8 Items that costs £20 or less

### **HOMEWORK 2F**

| 1 | а | £18    | b | £120    | С | 63 kg |
|---|---|--------|---|---------|---|-------|
|   | d | 440 m  | е | £247    | f | 60 cm |
|   | g | 232 g  | h | £327.25 | i | 12 kg |
|   | j | £39.69 |   |         |   |       |

- **2** £6384
- **3** 2112
- **4** £459
- **5** No, he is £1.60 short. (£24 + £104 + £33.60 = £161.60)
- 6 Seven absentees
- 7 680 units
- B Goods are cheaper, for example, £100 + 10% = £100 + £10 = £111
   £111 10% = £111 £11.10 = £99.90
- **9** Students should show all workings for proof.

## 2.6 Expressing one quantity as a percentage of another

### **HOMEWORK 2G**

| 1 | а  | 20%                            | b    | 25%                          | С | 10%   |
|---|----|--------------------------------|------|------------------------------|---|-------|
|   | d  | 75%                            | е    | 80%                          | f | 46%   |
|   | g  | 33.3%                          | h    | 30%                          | i | 67.5% |
|   | j  | 23.8%                          |      |                              |   |       |
| 2 | а  | 75%                            | b    | 37.5%                        |   |       |
| 3 | а  | 60%                            | b    | 40%                          |   |       |
| 4 | 29 | .3%                            |      |                              |   |       |
| 5 | Mi | cro hi-fi system: 66.7%        | )    |                              |   |       |
|   | CE | 0 radio cassette: 50.0%        | ó    |                              |   |       |
|   | Mi | niDisc player: 50.0%           |      |                              |   |       |
|   | Сс | ordless headphones: 60         | 6.6% | %                            |   |       |
| 6 | Pa | ul 33.3% ( <u>10</u> × 100), V | al 3 | 9.2% ( $rac{11}{28}$ × 100) |   |       |

Val has the greater percentage increase.

- **7** 60
- **8** 1000
- 9 Maths 84%, English 70%, Science 62.5%, French 45%
- **10** 22%

### 2.7 Compound interest and repeated percentage change

### **HOMEWORK 2H**

| 1 | а | 5.5 cm     | b | 6.05 cm | С | 7.32 cm |
|---|---|------------|---|---------|---|---------|
|   | d | 9.74 cm    |   |         |   |         |
| 2 | а | £32 413.50 | b | 7 years |   |         |
| 3 | а | £291.60    | b | £314.93 | С | £367.33 |
| 4 | а | 1725       | b | 1984    | С | 2624    |

**5** After 11 years, the sycamore is 93.26 cm tall and the conifer is 93.05 cm tall. After 12 years, the sycamore is 100.73 cm tall and the conifer is 107 cm tall.

- 6 Two years
- 7 Four weeks

### 2.6 Reverse percentage (working out the original quantity)

### **HOMEWORK 2I**

| 1 | а  | 800 g                 | b     | 96 m        | С | 840 cm   |
|---|----|-----------------------|-------|-------------|---|----------|
| 2 | а  | 70 kg                 | b     | £180        | С | 40 hours |
| 3 | Ju | mper £12, Socks £1.60 | ), Ti | rousers £20 |   |          |

- **4** £15
- **5** £180
- **6 a** £22 454 **b** 6.8%
- 7 100% (still twice as many)
- **8** £1800

## **Functional Maths Activity**

Value Added Tax

Task 1

|       |         |       |        | VAT tabl | е     |       |       |         |
|-------|---------|-------|--------|----------|-------|-------|-------|---------|
| Rate  | £1      | £10   | £100   | £500     | £1000 | £2000 | £5000 | £10 000 |
| 5%    | 5р      | 50p   | £5     | £25      | £50   | £100  | £250  | £500    |
| 8%    | 8p      | 80p   | £8     | £40      | £80   | £160  | £400  | £800    |
| 15%   | 15p     | £1.50 | £15    | £75      | £150  | £300  | £750  | £1500   |
| 17.5% | 18p     | £1.75 | £17.50 | £87.50   | £175  | £350  | £875  | £1750   |
|       | (17.5p) |       |        |          |       |       |       |         |
| 20%   | 20p     | £2    | £20    | £100     | £200  | £400  | £1000 | £2000   |

|       | Total cost table |        |         |         |       |       |       |         |  |
|-------|------------------|--------|---------|---------|-------|-------|-------|---------|--|
| Rate  | £1               | £10    | £100    | £500    | £1000 | £2000 | £5000 | £10 000 |  |
| 5%    | £1.05            | £10.50 | £105    | £525    | £1050 | £2100 | £5250 | £10 500 |  |
| 8%    | £1.08            | £10.80 | £108    | £540    | £1080 | £2160 | £5400 | £10 800 |  |
| 15%   | £1.15            | £11.50 | £115    | £575    | £1150 | £2300 | £5750 | £11 500 |  |
| 17.5% | £1.18            | £11.75 | £117.50 | £587.50 | £1175 | £2350 | £5875 | £11 750 |  |
|       | (17.5p)          |        |         |         |       |       |       |         |  |
| 20%   | £1.20            | £12    | £120    | £600    | £1200 | £2400 | £6000 | £12 000 |  |

### Task 2

Toy: £19.98 Television: £528.75 Shirt: £9.40 iPod or similar: £124.55

### Task 3

Doll: £9.79 (£1.71 VAT) Dress: £16.64 (£2.91 VAT) Sound system: £187.91 (£32.89 VAT) Ja

Jacket: £62.64 (£10.96 VAT)

# 3 Number: Ratios and proportion

## 3.1 Ratio

| HO | ME             | WORK 3A                  |      |                         |   |          |
|----|----------------|--------------------------|------|-------------------------|---|----------|
| 1  | а              | 1:3                      | b    | 1:5                     | С | 1:6      |
|    | d              | 1:3                      | е    | 2:3                     | f | 3:5      |
|    | g              | 5:8                      | h    | 15 : 2                  | i | 2:5      |
|    | j              | 5:2                      |      |                         |   |          |
| 2  | а              | 1:4                      | b    | 3:4                     | С | 1:8      |
|    | d              | 2:5                      | е    | 2:5                     | f | 8 : 15   |
|    | g              | 10 : 3                   | h    | 1:3                     | i | 3:8      |
|    | j              | 1:5                      |      |                         |   |          |
| 3  | а              | $\frac{1}{4}$            | b    | $\frac{3}{4}$           |   |          |
| 4  | а              | 2                        | b    | 3                       |   |          |
| _  | _              | 5                        |      | 9                       |   |          |
| 5  | а              | 10                       | D    | 10                      |   |          |
| 6  | 2 :            | 1                        |      |                         |   |          |
| 7  | $\frac{1}{16}$ |                          |      |                         |   |          |
| 8  | 3 :            | 7                        |      |                         |   |          |
| но | ME             | WORK 3B                  |      |                         |   |          |
| 1  | а              | £2 : £8                  | b    | £4 : £8                 |   |          |
|    | с              | £10 : £30                | d    | 10 g : 50 g             |   |          |
|    | е              | 1 h : 9 h                |      | 0 0                     |   |          |
| 2  | а              | 300                      | b    | 100                     |   |          |
| 3  | 2 n            | n and 18 m               |      |                         |   |          |
| 4  | а              | 10 kg : 15 kg            | b    | 18 days : 12 days       |   |          |
|    | С              | 30 m : 40 m              | d    | £1.50 : £3.50           |   |          |
|    | е              | 15 h : 9 h               |      |                         |   |          |
| 5  | 40             | 0                        |      |                         |   |          |
| 6  | 45             |                          |      |                         |   |          |
| 7  | £6             |                          |      |                         |   |          |
| 8  | £3             | 0 and £36                |      |                         |   |          |
| 9  | а              | 1 : 1.5                  | b    | 1 : 2.5                 | С | 1 : 1.25 |
|    | d              | 1 : 1.6                  | е    | 1 : 2.1                 |   |          |
| 10 | $\frac{1}{30}$ |                          |      |                         |   |          |
| 11 | £8             |                          |      |                         |   |          |
| 12 | £3             | 24                       |      |                         |   |          |
| 13 | No             | te: this question will b | e or | nitted in the reprints. |   |          |

### HOMEWORK 3C

| 1  | 20  |                           |     |           |
|----|-----|---------------------------|-----|-----------|
| 2  | 80  |                           |     |           |
| 3  | а   | 15 litres                 | b   | 25 litres |
| 4  | а   | 80 kg                     | b   | 5 kg      |
| 5  | 90  |                           |     |           |
| 6  | а   | 200 g                     | b   | 320 g     |
| 7  | а   | £4000                     | b   | £6000     |
| 8  | Fre | d's, at 4 : 1; Jodie's is | onl | y 3.5 : 1 |
| 9  | 2   |                           |     |           |
| 10 | 17  |                           |     |           |

### 3.2 Speed, time and distance

### **HOMEWORK 3D**

- **1** 15 mph
- 2 180 miles
- 3 46 mph
- 4 2 pm
- 5 a 30 mph
  - **d** 50 km **e**  $3\frac{1}{4}$  hours
- **6 a** 130 km
- 7 a 30 minutes8 a 1.25 hour
- b 52 km/hb 12 mph
  - **b** 45 miles

**b** 50 km/h

- c 20 miles
- f 3 hours 36 minutes

- 9 24 mph10 40 mph
- 11 30 minutes

## 3.3 Direct proportion problems

### **HOMEWORK 3E**

1 £8 **2** £2.16 **3** £49.60 **4 a** €2.25 **b** 20 **5** a £27.20 **b** 11 **b** 405 miles 6 a 6 litres 7 48 seconds **8 a i** 50 g, 2, 40 g, 100 g ii 200 g, 8, 160 g, 400 g iii 250 g, 10, 200 g, 500 g **b** 60 **9** 6 **10** 6 11 3

©HarperCollins Publishers Ltd

### 3.4 Best buys

### **HOMEWORK 3F**

- **1 a** Both work out at same price: £1.99 for two (to nearest penny)
  - **b** £1.20 for 20 is better value
- **2** a Large size, 4.0 g/p
  - **b** 200 g bar, 2.2 g/p
  - c 500 g tin, 0.64 g/p
  - d Large jar, 3.8 g/p
- 3 Large size
- 4 72p, 66p, 70p, 65p; therefore 3-litre bottle is best value for money
- 5 Better value for money: 3 for the price of 2; 1500 g for £3.38
- 6 Hannah got the better mark, since it is equivalent to 85 out of 100. John's mark is equivalent to 80 out of 100.

### 3.5 Density

### **HOMEWORK 3G**

- **1**  $0.9 \text{ g/cm}^3$
- **2** 62.5 g/cm<sup>3</sup>
- **3** 30 g
- **4** 500 cm<sup>3</sup>
- **5** 1350 g
- **6** 909 cm<sup>3</sup>
- **7** 5.25 g/cm<sup>3</sup>
- **8** 996 tonnes
- **9** 1.11 g/cm<sup>3</sup>
- **10 a** 13.04 m<sup>3</sup>

#### b 5.2 tonnes

- **11** 275 grams
- **12** Different metals vary in density, resulting in more or less mass, even though the volume may be the same.

### **Functional Maths Activity**

### Metal objects

| Item                      | Mass g | Cost per gram |
|---------------------------|--------|---------------|
| Ring (gold)               | 9.65   | £16.58        |
| Statue (cast iron)        | 108    | 83p           |
| Jug (silver)              | 31.2   | 80p           |
| Tankard (stainless steel) | 30     | 33p           |
| Candlestick (brass)       | 51     | 29p           |
| Plate(copper)             | 62.3   | 22p           |

## 4 Geometry: Length, area and volume

## 4.1 Circumference and area of a circle

| НС                                                                                            | OMEWO                                                                                                                                                                                                     | RK 4A                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                         |   |                       |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|
| 1                                                                                             | <b>a</b> 9.4                                                                                                                                                                                              | cm                                                                                                                                                                                                                                                    | b                                | 31.4 cm                                                                                                                                                                 | С | 50.3 m                |
|                                                                                               | <b>d</b> 44.                                                                                                                                                                                              | 0 cm                                                                                                                                                                                                                                                  | е                                | 20.1 cm                                                                                                                                                                 | f | 22.0 cm               |
| 2                                                                                             | 200π                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                         |   |                       |
| 3                                                                                             | <b>a</b> 15.                                                                                                                                                                                              | 7 cm                                                                                                                                                                                                                                                  | b                                | 2                                                                                                                                                                       |   |                       |
| 4                                                                                             | 1705 c                                                                                                                                                                                                    | omplete revolution                                                                                                                                                                                                                                    | าร                               |                                                                                                                                                                         |   |                       |
| 5                                                                                             | <b>a</b> 16π                                                                                                                                                                                              | τ cm <sup>2</sup>                                                                                                                                                                                                                                     | b                                | 153.9 cm <sup>2</sup>                                                                                                                                                   | С | 254.5 cm <sup>2</sup> |
|                                                                                               | <b>d</b> π m                                                                                                                                                                                              | 1 <sup>2</sup>                                                                                                                                                                                                                                        | е                                | 1385.4 cm <sup>2</sup>                                                                                                                                                  | f | 0.6 cm <sup>2</sup>   |
| 6                                                                                             | 18.0 cr                                                                                                                                                                                                   | n                                                                                                                                                                                                                                                     |                                  |                                                                                                                                                                         |   |                       |
| 7                                                                                             | 6π + 12                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                     |                                  |                                                                                                                                                                         |   |                       |
| 8                                                                                             | 3.82 cr                                                                                                                                                                                                   | n                                                                                                                                                                                                                                                     |                                  |                                                                                                                                                                         |   |                       |
| 9                                                                                             | 66 m <sup>2</sup>                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                         |   |                       |
| 10                                                                                            | 88.4 cr                                                                                                                                                                                                   | n <sup>2</sup>                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                         |   |                       |
| 11                                                                                            | 3.99 m                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                         |   |                       |
| 12                                                                                            | 49.7 cr                                                                                                                                                                                                   | n <sup>2</sup>                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                         |   |                       |
| 13                                                                                            | 329 m <sup>2</sup>                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                     |                                  |                                                                                                                                                                         |   |                       |
| 14                                                                                            | 814 cm                                                                                                                                                                                                    | າ <sup>2</sup>                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                         |   |                       |
| 15                                                                                            | 110 me                                                                                                                                                                                                    | etres                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                         |   |                       |
|                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                         |   |                       |
| 4.2                                                                                           | 2 Area                                                                                                                                                                                                    | of a trapezium                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                         |   |                       |
| 4.2<br>HC                                                                                     | 2 Area<br>DMEWO                                                                                                                                                                                           | RK 4B                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                         |   |                       |
| 4.:<br>HC<br>1                                                                                | 2 Area<br>DMEWO<br>a 23.                                                                                                                                                                                  | <b>RK 4B</b><br>1 cm, 28 cm <sup>2</sup>                                                                                                                                                                                                              | b                                | 36 cm, 66. 5 cm <sup>2</sup>                                                                                                                                            |   |                       |
| 4.2<br>HC<br>1<br>2                                                                           | 2 Area<br>0MEWO<br>a 23.<br>a 89                                                                                                                                                                          | <b>RK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup>                                                                                                                                                                                            | b<br>b                           | 36 cm, 66. 5 cm²<br>35.5 cm²                                                                                                                                            |   |                       |
| 4.2<br>HC<br>1<br>2<br>3                                                                      | <ul> <li>2 Area</li> <li>&gt;MEWO</li> <li>a 23.</li> <li>a 89</li> <li>a = 10</li> </ul>                                                                                                                 | <b>RK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>$m^{2}$<br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup>                                                                                                                                               | b<br>b<br>so a                   | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area                                                                                          |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4                                                                 | 2 Area<br><b>MEWO</b><br><b>a</b> 23.<br><b>a</b> 89<br><b>a</b> = 10<br>57 cm <sup>2</sup>                                                                                                               | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>$m^2$<br>$cm^2$ ; <b>b</b> = 9.6 cm <sup>2</sup>                                                                                                                                                         | b<br>b<br>SO a                   | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area                                                                                          |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5                                                            | 2 Area<br><b>DMEWO</b><br><b>a</b> 23.<br><b>a</b> 89<br><b>a</b> = 10<br>57 cm <sup>2</sup><br>About 3                                                                                                   | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg                                                                                                                               | b<br>b<br>so a                   | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area                                                                                          |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6                                                       | 2 Area<br><b>MEWO</b><br><b>a</b> 23.<br><b>a</b> 89<br><b>a</b> = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm                                                                                            | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg                                                                                                                               | b<br>b<br>so a                   | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area                                                                                          |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                  | 2 Area<br><b>MEWO</b><br><b>a</b> 23.<br><b>a</b> 89<br><b>a</b> = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br><b>a</b> 45                                                                             | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup>                                                                                                            | b<br>b<br>so a<br>b              | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup>                                                                    |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                             | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%                                                                                                       | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup>                                                                                                            | b<br>b<br>so a<br>b              | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup>                                                                    |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.3                                      | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Sector                                                                                           | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup>                                                                                                            | b<br>b<br>soa<br>b               | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup>                                                                    |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.3<br>HC                                | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Sector<br>MEWO                                                                                   | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b>                                                                             | b<br>b<br>so a<br>b              | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup>                                                                    |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.3<br>8<br>4.3<br>HC<br>1               | <ul> <li>Area</li> <li>MEWO</li> <li>a 23.</li> <li>a 89</li> <li>a = 10</li> <li>57 cm<sup>2</sup></li> <li>About 3</li> <li>5 cm</li> <li>a 45</li> <li>64.7%</li> <li>Sector</li> <li>a 8.7</li> </ul> | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup>                                                 | b<br>b<br>so<br>b                | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup>                                     |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.2<br>HC<br>1<br>2                      | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Sector<br>MEWO<br>a 8.7<br>2.5π                                                                  | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup><br>6.25 $\pi$                                   | b<br>b<br>soa<br>b               | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup>                                     |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.5<br>6<br>7<br>8<br>4.5<br>1<br>2<br>3 | 2 Area<br><b>MEWO</b><br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Sector<br><b>MEWO</b><br>a 8.7<br>2.5π<br>a 51.                                           | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup><br>6.25 $\pi$<br>4 cm                           | b<br>b<br>so<br>b<br>b           | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup><br>80.5 cm                          |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.2<br>HC<br>1<br>2<br>3<br>4            | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Secto<br>MEWO<br>a 8.7<br>2.5π<br>a 51.<br>a 134                                                 | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup><br>6.25 $\pi$<br>4 cm<br>4 cm <sup>2</sup>      | b<br>b<br>soa<br>b<br>b<br>b     | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup><br>80.5 cm<br>222.7 cm <sup>2</sup> |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.2<br>1<br>2<br>3<br>4<br>5             | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Sector<br>a 8.7<br>2.5 $\pi$<br>a 51.<br>a 134<br>268 m <sup>2</sup>                             | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup><br>6.25 $\pi$<br>4 cm<br>4 cm <sup>2</sup>      | b<br>b<br>so<br>b<br>b<br>b<br>b | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup><br>80.5 cm<br>222.7 cm <sup>2</sup> |   |                       |
| 4.2<br>HC<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>4.3<br>HC<br>1<br>2<br>3<br>4<br>5<br>6  | 2 Area<br>MEWO<br>a 23.<br>a 89<br>a = 10<br>57 cm <sup>2</sup><br>About 3<br>5 cm<br>a 45<br>64.7%<br>3 Secto<br>MEWO<br>a 8.7<br>$2.5\pi$<br>a 51.<br>a 134<br>268 m <sup>2</sup><br>26.1 cr            | <b>PRK 4B</b><br>1 cm, 28 cm <sup>2</sup><br>m <sup>2</sup><br>cm <sup>2</sup> ; <b>b</b> = 9.6 cm <sup>2</sup><br>3 kg<br>cm <sup>2</sup><br><b>brs</b><br><b>PRK 4C</b><br>cm, 43.6 cm <sup>2</sup><br>6.25 $\pi$<br>4 cm<br>4 cm <sup>2</sup><br>n | b<br>soa<br>b<br>b<br>b          | 36 cm, 66. 5 cm <sup>2</sup><br>35.5 cm <sup>2</sup><br>a has the largest area<br>24 cm <sup>2</sup><br>11 cm, 38.5 cm <sup>2</sup><br>80.5 cm<br>222.7 cm <sup>2</sup> |   |                       |

8 Unshaded part is 96.6 cm<sup>2</sup>

## 4.4 Volume of a prism

### **HOMEWORK 4D**

- **1 a** 10.5 m<sup>2</sup>, 42 m<sup>3</sup> **b** 25 m<sup>2</sup>, 250 m<sup>3</sup>
- **2** 21.5 cm<sup>2</sup>
- **3** 90 cm<sup>3</sup>
- 4 a i is the heaviest (190 g)
  - **b ii** is the lightest (187.8 g) (**iii** weighs 189 g)

## 4.5 Cylinders

### **HOMEWORK 4E**

- **1** i  $100\pi$  cm<sup>3</sup> ii  $40\pi$  cm<sup>2</sup>
- **2** i 3400 cm<sup>3</sup> ii 850 cm<sup>2</sup>
- **3 a i** 785 cm<sup>3</sup> **ii** 471 cm<sup>2</sup>
- **b** i  $393 \text{ cm}^3$  ii  $314 \text{ cm}^2$
- 4 2 cm
- 5 18 cm
- 6 3 cm
- **7** 159 cm<sup>3</sup>
- **8** 297 cm<sup>2</sup>
- **9** 125π cm<sup>3</sup>
- **10** 79.6 cm<sup>3</sup>
- **11** 10.4 cm
- 12 211 cylinders

## **Functional Maths Activity**

### Packaging sweets

|              | Cuboid              | Triangular prism    | Cylinder            |
|--------------|---------------------|---------------------|---------------------|
| Side length  | 7.07 cm             | 10.75 cm            |                     |
| Radius       |                     |                     | 3.99 cm             |
| Surface area | 666 cm <sup>2</sup> | 745 cm <sup>2</sup> | 601 cm <sup>2</sup> |

Differences between the three surface areas:

- triangular prism is 79 cm<sup>2</sup> larger than the cuboid and 144 cm<sup>2</sup> larger than the cylinder
- cuboid is 65 cm<sup>2</sup> larger than the cylinder.

How surface area affects production costs: the larger the surface area, the more packaging material that is required therefore the higher the production costs.

## 5 Algebra: Expressions and equations

## 5.1 Basic algebra

| HO | HOMEWORK 5A |                            |                   |                         |   |       |  |  |  |
|----|-------------|----------------------------|-------------------|-------------------------|---|-------|--|--|--|
| 1  | а           | 15                         | b                 | 27                      | С | 47    |  |  |  |
| 2  | а           | 5                          | b                 | 14                      | С | 29    |  |  |  |
| 3  | а           | 9                          | b                 | 12                      | С | 19    |  |  |  |
| 4  | а           | 2                          | b                 | -4                      | С | –16   |  |  |  |
| 5  | а           | 0.5                        | b                 | 6.5                     | С | 26.5  |  |  |  |
| 6  | а           | -8                         | b                 | -3                      | С | 109.5 |  |  |  |
| 7  | а           | –11                        | b                 | –15                     | С | 7     |  |  |  |
| 8  | а           | 13                         | b                 | 16                      | С | 5.4   |  |  |  |
| 9  | а           | 11                         | b                 | -14                     | С | -0.75 |  |  |  |
| 10 | а           | 3.5                        | b                 | 19.4                    | С | 8.03  |  |  |  |
| 11 | а           | 25                         | b                 | 169                     |   |       |  |  |  |
| 12 | а           | 16                         | b                 | 21                      |   |       |  |  |  |
| 13 | а           | 51                         | b                 | 36                      | С | 19    |  |  |  |
| 14 | а           | 17                         | b                 | 28                      |   |       |  |  |  |
| 15 | а           | 624                        | b                 | 217                     |   |       |  |  |  |
| 16 | а           | 102                        | b                 | 791                     |   |       |  |  |  |
| 17 | 162         | 2 m by 27 m by 16.2 m      | ۱                 |                         |   |       |  |  |  |
| 18 | а           | 4a + 6b - 5c and $4a - 6c$ | <b>4</b> <i>b</i> | + <i>c</i>              | b | 48    |  |  |  |
| 19 | а           | 20 °C                      | b                 | $F = \frac{9}{5}C + 32$ |   |       |  |  |  |
| 20 | а           | £155.25                    | b                 | £20.25 in credit        |   |       |  |  |  |
| 21 | а           | 64.4                       | b                 | 76                      | С | 57.2  |  |  |  |
| 22 | а           | Зр                         |                   |                         |   |       |  |  |  |

- **b** Basic charge of £4.50 plus 2p profit (5 3) per page
- **c** £44.50

### **HOMEWORK 5B**

| 1  | 12 + 3 <i>m</i>  | 2  | 18 + 6 <i>p</i>                         | 3  | 16 – 4y                  |
|----|------------------|----|-----------------------------------------|----|--------------------------|
| 4  | 18 + 21 <i>k</i> | 5  | 12 – 20 <i>f</i>                        | 6  | 8 – 46 <i>w</i>          |
| 7  | 7g + 7h          | 8  | 8 <i>k</i> + 16 <i>m</i>                | 9  | 12 <i>d</i> – 6 <i>n</i> |
| 10 | $t^2 + 5t$       | 11 | $m^2 + 4m$                              | 12 | $k^2 - 2k$               |
| 13 | $4g^2 + g$       | 14 | $3y^2 - 21y$                            | 15 | $7p - 8p^2$              |
| 16 | $2m^2 + 10m$     | 17 | $3t^2 - 6t$                             | 18 | $15k - 3k^2$             |
| 19 | $8g^2 + 6g$      | 20 | $8h^2 - 12h$                            | 21 | $12t - 10t^2$            |
| 22 | $12d^2 + 20de$   | 23 | $12y^2 + 15ky$                          | 24 | $18m^3 - 6m^2p$          |
| 25 | $y^3 + 7y$       | 26 | $h^4 + 9h$                              | 27 | $k^{3} - 4k$             |
| 28 | $3t^3 + 9t$      | 29 | $5h^4 - 10h$                            | 30 | $4g^4 - 12g$             |
| 31 | $10m^3 + 5m^2$   | 32 | $8d^3 - 2d^4$                           | 33 | $12w^3 + 4wt$            |
| 34 | $15a^3 - 3ab$    | 35 | 14 <i>p</i> <sup>4</sup> – 16 <i>mp</i> | 36 | $3m^2 + 5m^3$            |
| 37 | $4t^4$           | 38 | $4g^2t - 3g^4$                          | 39 | $14t^3 + 2mt^2$          |
|    |                  |    |                                         |    |                          |

**40**  $12h^3 + 15gh^2$  **41 a**  $-4 \,^{\circ}\text{C}$  **b** F = 2(C + 15) **42** y + y = 2y, 3y + 6 = 3(y + 2), 5y - 10 = 5(y - 2)**43** Correct answers such as: 2(6x + 12y), 12(x + 2y), 6(2x + 4y)

### **HOMEWORK 5C**

| 1 | а | 9 <i>t</i>                  | b  | 7 <i>m</i>              | С             | <b>7</b> <i>y</i>                   |
|---|---|-----------------------------|----|-------------------------|---------------|-------------------------------------|
|   | d | 10 <i>d</i>                 | е  | 2 <i>e</i>              | f             | <b>3</b> <i>g</i>                   |
|   | g | <b>2</b> <i>p</i>           | h  | <b>4</b> <i>t</i>       | i             | $5t^2$                              |
|   | j | $3y^2$                      | k  | <b>7</b> <i>ab</i>      | I             | $a^2d$                              |
| 2 | а | 18 + 7 <i>t</i>             | b  | <b>22 + 24</b> <i>k</i> | С             | 13 + 32 <i>m</i>                    |
|   | d | 17 + 13 <i>y</i>            | е  | 28 + 12 <i>f</i>        | f             | 20 + 33 <i>g</i>                    |
|   | g | 2 + 2 <i>h</i>              | h  | 9 <i>g</i> + 5          | i             | 6y + 11                             |
|   | j | 7 <i>t</i> – 4              | k  | 17 <i>k</i> + 16        | 1             | 6 <i>e</i> + 20                     |
|   | m | 5m + 2p + 2mp               | n  | 4k + 5h + 3hk           | ο             | t + 3n + 7nt                        |
|   | р | p + 5q + 8pq                | q  | 6h + 12j + 11hj         | r             | 15y + 2t + 20ty                     |
|   | s | $4t^2 + 13t$                | t  | $15y^2 + 7y$            | u             | $11w^2 + 22w$                       |
|   | v | $17p^2 + 6p$                | w  | $m^2 + 8m$              | x             | $14d - 3d^2$                        |
|   | у | $2a^3 + 10a^2 + 15ab + 3$   | ac | z                       | $4y^3 + 3y^3$ | $^{2}$ + 12 <i>yw</i> – 4 <i>ty</i> |
| 3 | а | 100 <i>x</i> + 300 <i>y</i> | b  | £1700                   |               |                                     |
|   |   |                             |    |                         |               |                                     |

- 4 He has worked out  $2 \times 3$  as 5 instead of 6 And he has worked out -2 + 15 as -13, not +13Answer should be 16x + 13
- **5 a ii** 5(*x* + 0.75) + 3(*x* + 0.25) **b** £44.50

### 5.2 Factorisation

### **HOMEWORK 5D**

| 1  | 3(3                | m + 4t)            | 2  | 3(3t + 2p)         | 3  | 4(m + 3k)          |
|----|--------------------|--------------------|----|--------------------|----|--------------------|
| 4  | 2(2                | 2r + 3t)           | 5  | m(2n + 3)          | 6  | g(4g + 3)          |
| 7  | <b>4(</b> <i>v</i> | v - 2t)            | 8  | 2(5p - 3k)         | 9  | 2(6h - 5k)         |
| 10 | 2 <i>m</i>         | (2p + k)           | 11 | 2b(2c + 3k)        | 12 | 4a(2b + c)         |
| 13 | y <b>(3</b>        | y <b>+ 4</b> )     | 14 | t(5t - 3)          | 15 | d(3d - 2)          |
| 16 | 3 <i>m</i>         | (2m - p)           | 17 | 3p(p + 3t)         | 18 | 4p(2t + 3m)        |
| 19 | <b>2</b> b(        | (4a - 3c)          | 20 | 4a(a - 2b)         | 21 | 2t(4m-3p)          |
| 22 | <b>4</b> <i>at</i> | (5t + 3)           | 23 | 2bc(2b-5)          | 24 | 2b(2ac + 3ed)      |
| 25 | 2(3                | $a^2 + 2a + 5$ )   | 26 | 3b(4a + 2c + 3d)   | 27 | t(6t + 3 + a)      |
| 28 | 3 <i>m</i>         | t(32t - 1 + 23m)   | 29 | 2ab(3b + 1 - 2a)   | 30 | 5pt(t + 3 + p)     |
| 31 | а                  | Does not factorise | b  | m(3 + 2p)          | С  | t(t-5)             |
|    | d                  | Does not factorise | е  | 2m(4m-3p)          | f  | Does not factorise |
|    | g                  | a(3a - 7b)         | h  | Does not factorise | i  | b(7a-4bc)          |
|    | j                  | Does not factorise | k  | 3mt(2m + 3t)       | I  | Does not factorise |

- **32 a** Tess, as 9.99 1.99 = 8, so she will just have to work out  $8 \times 8$ 
  - **b** Tom £48, Tess £64

**33 a i** *x* – 4 ii 3(x-4)iii x(x-4)

**b** x - 4 as a factor

- 34 a Each bracket adds up to 101, and there are 50 brackets. **b** 5050

### 5.3 Solving linear equations

#### **HOMEWORK 5E**

| 1 | а  | 18                       | b | 28   | С | 54 |
|---|----|--------------------------|---|------|---|----|
|   | d  | 64                       | е | 6    | f | 12 |
|   | g  | 12.5                     | h | 12   | i | 1  |
|   | j  | -2                       | k | 18   | T | 15 |
| 2 | An | y valid equations        |   |      |   |    |
| 3 | а  | 8                        | b | 2    | С | 6  |
|   | d  | 2                        | е | 3    | f | -4 |
|   | g  | 2.5                      | h | -1.5 |   |    |
| 4 | а  | $\frac{x-16}{8} = 11.25$ | b | £106 |   |    |

#### **HOMEWORK 5F**

| 1 | а | -1  | b | 10 | С | 2    |
|---|---|-----|---|----|---|------|
|   | d | 1.5 | е | 3  | f | 4    |
|   | g | 1   | h | 3  | i | -0.5 |
|   | j | 1   | k | 2  | L | -1   |
|   | m | 7   | n | 7  | ο | 4.5  |
|   | р | 2   | q | -5 | r | -3   |
|   | S | 0   | t | 5  | u | 0.25 |
|   | v | -1  | w | 1  | х | -2   |

- **2** Length is 5 m; width is 4 m; area is  $45 \text{ m}^2$ . Carpet costs £13.50 per square metre.
- **3** a = 5, b = 2, c = 4
- 4 Zak is wrong, as he has not multiplied the bracket correctly to get 10x + 3 = 13in both cases. First equation x = -0.2, second equation x = 0.7

#### **HOMEWORK 5G**

- **1** *x* = 1 **2** v = 1**3** *a* = 2 **4** *t* = 5 **5** *p* = 3 **6** *k* = 3 **9** y = 6
- **7** *d* = 7 **8** *x* = 21
- **10** b = 3**11** c = 2
- **12** 5x + 120 = 3x + 908, 2x = 788, x = 394
- **13** x = 4, perimeter = 27 cm
- **14** 5x + 2 = 3x 6, x = -4

### 5.4 Setting up equations

### **HOMEWORK 5H**

- 1 *Y* + 23 = 37, 14 years
- **2** 3*X* = 24, 8 years
- **3** 2(x + 7) = 24, x = 5
- **4** 5x + 2 = 32, x = 6
- 5 6b + 5 = 65, b = 10, 20 crime novels, 28 science fiction and 17 romance
- **6** 4x + 6 = 26, so 4x = 20, x = 5
- 7 3(x-4) = 24, so x 4 = 8, x = 12
- 8 If a magazine costs *m* pence, then a book costs 2m pence. Then, Derek will have spent 2m on a book and 2m on magazines, so 4m = 600, m = 150p or £1.50. Assuming Kerry bought *x* books and *x* magazines, he will have spent  $x \times (m + 3m)$  which is 3mx or 450x pence. But he paid £22.50, which is 2250p, so 450x = 2250 and x = 5. Kerry bought 5 magazines.
- **9** a Suppose there are *x* 50p coins. Then, totalling the numbers of coins,  $2x [\pounds 1 \text{ coins}] + x [50p \text{ coins}] + (x + 4) (\pounds 2 \text{ coins}] = 4x + 4 \text{ coins}.$ Now 4x + 4 = 44, so x = 10. Therefore, there are 20 £1 coins, 10 50p coins and 14 £2 coins.
  - **b**  $(20 \times \pounds1) + (10 \times 50p) + (14 \times \pounds2) = \pounds20 + \pounds5 + \pounds28 = \pounds53$

### 5.5 Trial and improvement

#### **HOMEWORK 5I**

| 1  | а   | 1 and 2             | b | 3 and 4 | С | 4 and 5 |
|----|-----|---------------------|---|---------|---|---------|
|    | d   | 4 and 5             |   |         |   |         |
| 2  | а   | 3.1                 | b | 4.6     | С | 5.4     |
|    | d   | 7.0                 |   |         |   |         |
| 3  | 3.5 |                     |   |         |   |         |
| 4  | 4.7 |                     |   |         |   |         |
| 5  | 10. | 7 and 18.7 cm       |   |         |   |         |
| 6  | 21. | 8 and 36.8 m        |   |         |   |         |
| 7  | 5.4 | and 7.4 cm          |   |         |   |         |
| 8  | 12. | 6 and 9.6 cm        |   |         |   |         |
| 9  | а   | $x^3 + 3x^2 = 1000$ | b | 9.1 cm  |   |         |
| 10 | 3.3 |                     |   |         |   |         |
| 11 | 7.6 | and 2.6             |   |         |   |         |

### **Problem-solving Activity**

### Throwing a ball

| ć | 3 |  |
|---|---|--|
|   |   |  |

| 1.5   | 1.75  | 2  | 2.25  | 2.5  | 2.75 | 3 | 3.25  |
|-------|-------|----|-------|------|------|---|-------|
| 12.75 | 12.69 | 12 | 10.69 | 8.75 | 6.19 | 3 | -0.81 |

**b** Approx 3.2 sec

**c**  $0 = 16t - 5t^2$ , so t = 0 or 3.2

**d** 2.75

 $h = 1.6 \times 16 - 5 \times 1.6^2 = 12.8$ 

e Student's own answer

## 6 Geometry: Pythagoras' theorem

## 6.1 Pythagoras' theorem

### HOMEWORK 6A

- **1 a** 5 cm
  - **b** 4.41 cm
  - **c** 10.6 cm
  - **d** 35.4 cm
  - **e** 20 cm
  - f 19.2 cm
- **2 a** 40.15 m **b** 2100 m<sup>3</sup>
- **3** 15 cm, because  $7.5^2 + 10^2 = 12.5^2$
- 4 3.81 metres, so the beam is long enough

## 6.2 Finding a shorter side

### **HOMEWORK 6B**

| 1 | а   | 23.7 cm                | b  | 22.3 cm               | С | 6.9 cm |
|---|-----|------------------------|----|-----------------------|---|--------|
|   | d   | 32.6 cm                | е  | 8.1 cm                | f | 760 m  |
|   | g   | 0.87 cm                | h  | 12 m                  |   |        |
| 2 | а   | 10 m                   | b  | 27.2 cm               | С | 29.4 m |
|   | d   | 12.4 cm                |    |                       |   |        |
| 3 | 6.7 | 'm                     |    |                       |   |        |
| 4 | а   | 8.2 cm                 | b  | 8.0 cm                |   |        |
| 5 | No  | , because the ladder c | an | only reach 3.6 metres |   |        |
| 6 | 3 0 | m and 5 cm             |    |                       |   |        |

## 6.3 Applying Pythagoras' theorem in real-life situations

### **HOMEWORK 6C**

- 1
   9 m

   2
   3.23 m 

   3
   14.14 m

   4
   10 km

   5
   3.22 km 

   6
   a
   7.9 m b
   3.9 m 

   7
    $\sqrt{2}$  8
    $12 \text{ cm}^2$  9

   9
   Yes,  $61^2 = 60^2 + 11^2$  10
   14.76 units

   11
   a
   1 cm represents 2.5 km
   b
   40.4 km

   12
   12.7 metres
   b
   40.4 km
- **13** The diagonal of the drawer is  $\sqrt{(40^2 + 33^2)} = 51.8$  cm, so it will fit in the drawer if it is put in at an angle.

### **HOMEWORK 6D**

- **1** 32.8 cm<sup>2</sup>, 9.17 cm<sup>2</sup>
- **2** 36.7 cm<sup>2</sup>
- **3** 43.3 cm<sup>2</sup>
- **4 a** 173.2 cm<sup>2</sup>
  - **b** Only the lengths have doubled; the area has quadrupled.
- 5 a Student's sketches
  - **b** 8, 8, 6 has area 22.25  $\text{cm}^2$  and 6, 6, 8 has 17.9  $\text{cm}^2$
- **6** 54.5 mm<sup>2</sup>
- **7** 56.7%
- 8 49 cm or 49.2 cm

### 6.4 Pythagoras' theorem in three dimensions

### **HOMEWORK 6E**

| 1  | Yes                        |    |              |     |              |
|----|----------------------------|----|--------------|-----|--------------|
| 2  | <b>a i</b> AC = 12.8 cm    | ii | BG = 11.7 cm | iii | BE = 10.0 cm |
|    | <b>b</b> BH = 14.1 cm      |    |              |     |              |
| 3  | Yes                        |    |              |     |              |
| 4  | <b>a</b> 21 cm and 18.4 cm | b  | 13.4 cm      |     |              |
| 5  | 14.1 m and 14.5 m          |    |              |     |              |
| 6  | <b>a</b> DG = 11.2 cm      | b  | HA = 7.1 cm  |     |              |
|    | <b>c</b> DB = 11.2 cm      | d  | AG = 12.2 cm |     |              |
| 7  | 26 cm                      |    |              |     |              |
| 8  | 14.1 cm                    |    |              |     |              |
| 9  | <b>a</b> AC = 9.9 cm       | b  | EX = 10.9 cm | С   | EM = 11.5 cm |
| 10 | 42 cm                      |    |              |     |              |

### **Functional Maths Activity**

### Access ramps

- **a** The ratio of the maximum rise to the going is equal to the gradient.
- **b** The angles are 2.9 degrees and 4.7 degrees, a difference of 1.9 degrees.
- **c** Yes. By interpolation, the maximum gradient is 1 : 17 and the corresponding maximum rise is 412 mm, which is greater than the 400 mm he wants.

#### 7 Geometry: Angles and constructions

## 7.1 Special angles and quadrilaterals

## **HOMEWORK 7A**

- **1 a**  $a = 62^{\circ}, b = 108^{\circ}$ 
  - **b**  $c = 58^{\circ}, d = 122^{\circ}, e = 58^{\circ}$
  - **c**  $f = 15^{\circ}, g = 161^{\circ}$
- **2 a**  $x = 50^{\circ}, y = 40^{\circ}$ **b**  $x = 11^{\circ}, y = 40^{\circ}$
- **3 a**  $x = 100^{\circ}$ , trapezium
- **b**  $x = 50^{\circ}$ , kite

**4 a** 360°

- **b** Student's proof
- **5**  $D = 120^{\circ}$  (because A = 60°)
- 6 Angle B = 75° (opposite angles in a parallelogram are equal), so  $x = 90^{\circ}$ (angles in a triangle =  $180^{\circ}$ )
- 7 For example, only one pair of parallel sides, opposite angles are not the same, no rotational symmetry, diagonals do not bisect each other

## 7.2 Angles in polygons

### **HOMEWORK 7B**

| 1 | а | 900°   | b | 1620° | С | 3240° |
|---|---|--------|---|-------|---|-------|
|   | d | 5940°  |   |       |   |       |
| 2 | а | 156°   | b | 160°  | С | 168°  |
|   | d | 176.4° |   |       |   |       |
| 3 | а | 10     | b | 16    | С | 36    |
|   | d | 40     |   |       |   |       |
| 4 | а | 18     | b | 12    | С | 20    |
|   | d | 90     |   |       |   |       |
| 5 | а | 8      | b | 24    | С | 36    |
|   | d | 15     |   |       |   |       |
| ~ | 0 | 4      |   |       |   |       |

- 6 Octagon
- 7 a Decagon **b** 115°
- **8** 117°
- **9** Angle A and angle B are  $120^{\circ}$ ; angle C =  $60^{\circ}$
- **10** Angle AED =  $108^{\circ}$  (interior angle of a regular pentagon), angle ADE =  $36^{\circ}$ (angles in an isosceles triangle)
- 11 True statements:
  - **b** The size of each interior angle is 120°.
  - c The size of each exterior angle is 60°.

## 7.3 Constructing triangles

### **HOMEWORK 7C**

- Student's own drawings 1 a-e
- 2 Student's own drawing
- To draw this triangle, draw sides at 60° to each other; measure 5 cm along one 3 side; use compasses from this point to find 6 cm intersection with other line.

10

4 a Student's own drawing b Rhombus 5 Yes, he is correct 6  $9^{9}_{60^{\circ}}$   $60^{\circ}$   $9^{9}_{60^{\circ}}$   $9^{9}_{60^{\circ}}$ 

10

#### 7.4 Bisectors

10

#### **HOMEWORK 7D**

- 1 Student's own drawings
- 2 a–c Student's own drawings
- **3 a–c** Student's own drawings
- 4 a–c Student's own drawings





- 6 a Bisect 60, then bisect the 30 to get 15.
  - **b** Create a 60° angle, then on top of that, create the 15° to make 75°.
- 7 Each angle bisector is the locus of points equidistant from the two sides bisected – hence, where they all meet will be the only point that is equidistant from each of the three sides.

### 7.5 Defining a locus

### **HOMEWORK 7E**

1





- 8 a–b Student's own drawings
- **9** Student's own drawings starting point may be any point along the locus

### 7.6 Loci problems

### **HOMEWORK 7F**



8 b could be true – the locus is just two points

## **Problem-solving Activity**

### The nine-point circle



c No

#### 8 Geometry: Transformation geometry

## 8.1 Congruent triangles

### **HOMEWORK 8A**

- **b** Yes SSS 1 a Yes – SAS c Yes – AS
- 2 Student's diagrams; triangles that are congruent to each other: ABC, CDA, DAB and DCB (Note: if the point of intersection of AC and DB is T, then ATB, BTC, CTD and DTA are also congruent)
- Student's diagrams; depending on how the kite figure is oriented and labelled, 3 EFG and GHE or HFE and HFG are congruent
- **4** Student's diagrams: triangles that are congruent to each other: ABC and ACD; ABD and BCD
- 5 Student's diagrams: Triangles that are congruent to each other: ATC, CTB and ATB (and if the mid-points of AB, BC and CA are P, Q and R respectively, also ATP, PTB, BTQ, CTQ, CTR and RTA)
- 6 For example: AB = CD (given),  $\angle$ ABD =  $\angle$ CDB (alternate angles),  $\angle$ BAC =  $\angle$ DCA (alternate angles), so  $\triangle$ ABX =  $\triangle$ CDX (ASA)

 $\begin{pmatrix} 10 \\ -2 \end{pmatrix}$ 

 $\begin{pmatrix} 3\\ -3 \end{pmatrix}$ 

 $\binom{-8}{6}$ 

 $\begin{pmatrix} 7 \\ -1 \end{pmatrix}$ 

 $\begin{pmatrix} -6 \\ -4 \end{pmatrix}$ 

b

е

h

ii

7 AB and PQ are the corresponding sides to the 50° angle, but they are not equal in length.

## 8.2 Translations

### **HOMEWORK 8B**

- $\binom{7}{1}$ 1 i (-7)iv
  - v
- 2 a See triangle in centre of grid
  - **b** See P on grid
  - c See Q on grid
  - **d** See R on grid
  - e See S on grid



 $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ 

iii

4  $\binom{6}{2}$ 

d

g

3 а

- $\binom{2}{5}$ ,  $\binom{3}{-3}$ ,  $\binom{-5}{-2}$  or  $\binom{5}{2}$ ,  $\binom{-3}{-3}$ ,  $\binom{-2}{-5}$ 5
- 6 No, it is  $\binom{3}{2}$

 $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 

 $\binom{6}{4}$ 

 $\binom{8}{-6}$ 

## 8.3 Reflections

# HOMEWORK 8C





f Reflection in *y*-axis





3



**4** (6 − *a*, *b*)

- 5 a-e Student's diagrams
  - **f** Reflection in y = -x

### 8.4 Rotations

### **HOMEWORK 8D**

1 a–c



- d Rotation 90° clockwise about O
- **2 a** (1, 1), (3, 1), (3, 3), (1, 3)
  - **b** (1, -1), (3, -1), (3, -3), (1, -3)
  - **c** (-1, -1), (-3, -1), (-3, -3), (-1, -3)
  - **d** (-1, 1), (-3, 1), (-3, 3), (-1, 3)
  - e Same numbers, different signs

3







- **5 a** Rotation 90° anticlockwise about (0, 0)
  - **b** Rotation 180° (anti-)clockwise about (0, 0)
  - **c** Rotation 90° clockwise about (2.5, 0.5)
  - **d** Rotation 180° (anti-)clockwise about (2, -1)

**6 a** (b, -a) **b** (-a, -b) **c** (-b, a)

7 A rotation 90° anticlockwise about (2, 2)

### **HOMEWORK 8E**

- 1 Student's diagrams; check centre of enlargement and scale factor.
- 2



3



- **4** (1, 1), (3, 1) and (3, 2)
- **5 c** an enlargement of scale factor –3 about (1, 2)

## 8.6 Combined transformations

### **HOMEWORK 8F**



## **Functional Maths Activity**

### Transforming the sorting office

- 1 You need to examine each of the four possible starting points for the stamp. These are at the top right and bottom left of each side, allowing for 180° rotation of each side.
- 2 No, the machine would not detect the stamp on the top left-hand corner.
- 3 Four corners on each side could possibly be the 'top right'.
- 4 One way is to rotate about H and then rotate about one of the diagonals (call it D). Keep repeating this sequence H, D, H, D, ... and you will eventually check all eight corners.

## 9 Statistics: Data handling

## 9.1 Averages

## HOMEWORK 9A

- 1 a i Mode 6, median 4, mean 4
  - ii Mode 15, median 15, mean 15.1
  - iii Mode 32, median 32, mean 33
  - b i Mean, balanced data
    - ii Mode, appears six times
    - iii Median, 46 is an extreme value
- 2 a Mode 135 g, median 141 g, mean 143 g
- **b** Mean, takes all weights into account
- **3 a** 71 kg **b** 70 kg
  - c Median, 53 kg is an extreme weight
- **4 a** 59 **b** 54
  - c Median, the higher average
- 5 Kathy mean, Connie median, Evie mode
- 6 a For example: 1, 1, 4
  - **b** For example: 1.5, 3, 4.5
- 7 The teacher might be quoting the mean, while the student might be quoting the mode.

## 9.2 Frequency tables

### **HOMEWORK 9B**

- **1 a** Mode 16, median 15, mean 15.3
  - **b** Mode 5, median 5, mean 4.67
- 2 a 289 b 2 c 142 d 1.7
- **3** Find where the middle number of the data is located by dividing the total frequency (52) by two (26). The 26th value is three days a week and is the median.
- **4 a** 256 **b** 3.53 **c** 72
  - **d** 62%
- 5 Eggs: 3 and 4; Frequency: 6 and 4

## 9.3 Grouped data

### **HOMEWORK 9C**

| 1 | а | i   | 61–80       | ii | 57.87      |   |      |
|---|---|-----|-------------|----|------------|---|------|
|   | b | i   | 20.01–30.00 | ii | £27.39     |   |      |
| 2 | а | 79  |             | b  | 34 minutes | С | Mode |
|   | d | 94  | %           |    |            |   |      |
| 3 | а | 11  | 4           | b  | 9.4        | С | Mode |
|   | d | 5.3 | 3%          |    |            |   |      |
| - |   |     |             |    | _          |   |      |

4 The 15 and the 10 are the wrong way around.

5 Find the midpoint of each group, multiply that by the frequency and add those products. Divide that total by the total frequency.

### 9.4 Frequency diagrams

### **HOMEWORK 9D**

1

| Time in minutes    | 10 or less | Between<br>10 and 30 | 30 or more |
|--------------------|------------|----------------------|------------|
| Angle on pie chart | 48°        | 114°                 | 198°       |

2

| GCSE passes        | 9 or more | 7 or 8 | 5 or 6 | 4 or less |
|--------------------|-----------|--------|--------|-----------|
| Angle on pie chart | 40°       | 200°   | 100°   | 20°       |

3 a

| Main use           | E-mail | Internet | Word processing | Games |
|--------------------|--------|----------|-----------------|-------|
| Angle on pie chart | 50°    | 130°     | 30°             | 150°  |

**b** Most used the computer for playing games and only a few used it for word processing.

**c** Not enough in sample, only a small age range of people, probably only boys, and so on.

#### 4 a

| Type of<br>programme | Comedy | Drama | Films | Soaps | Sport |
|----------------------|--------|-------|-------|-------|-------|
| Angle on pie chart   | 54°    | 33°   | 63°   | 78°   | 132°  |

**b** No; only asked people who are likely to have similar interests, such as sport.

b

**5** a 25%

**b** Rarely

- **c** No, it only shows proportions.
- **d** What is your age? How often do you exercise? How often do you see a doctor?
- 6  $\frac{5}{36}$
- 7 A sample of students and the number of different breakfasts taken

### **HOMEWORK 9E**





**c** The first film was seen by mainly 10–30 year-olds, whereas the second film was seen by mainly 30–50 year-olds.



**b** Boys 12.6, girls 12.8; the girls had a higher mean score.

- 5 Five hours
- 6 The 5 minutes spent waiting is halfway between the 4- and 6-minute groups. These people are in that band, but maybe no one had to wait exactly 5 minutes.

### 9.5 Surveys

### **HOMEWORK 9F**

- 1 Answers will vary.
- **2** Answers will vary.
- 3 Answers will vary.
- **4 a** The form should be similar to the following example. Question: Do you go to rock concerts?

|     | Male | Female |
|-----|------|--------|
| Yes |      |        |
| No  |      |        |

- **b** Yes, it looks correct as a greater proportion of girls go to rock concerts. (63% of boys and 73% of girls go to rock concerts.)
- **5** The form should look something like the following example. Question: What of mobile phone do you own?

|           | Tally |
|-----------|-------|
| Orange    |       |
| O2        |       |
| Virgin    |       |
| Vodafone  |       |
| and so on |       |

Many variations are acceptable as answers, as long as students have provided some choices to be made that can distinguish one from the others.

6 Some examples include: types of goods, year of student, tally space, frequency.

### 9.6 Questionnaires

### **HOMEWORK 9G**

- 1 Answers will vary.
- 2 Answers will vary.
- 3 Answers will vary.
- 4 a-b Answers will vary.
- **5 a** It is a leading question and there is no possibility of showing disagreement.
  - **b** It is a clear direct question that has an answer and good responses as only one selection can be made.
  - **c** One example might be to ask, 'Which of the following types of DVD might you consider buying?' and give choices including 'Thriller', 'Romance', 'Comedy', 'Musical', 'Sci Fi' or 'None of those'.

- 6 Possible questions: 'How old are you?' (Responses: '30 or younger', 'Between 30 and 50'; '50 or over'); 'Do you go to Tango Lessons?' (Responses: 'Yes' or 'No')
- 7 The groups overlap each other, 'More than 5 times' and 'More than 10 times' are included in 'More than 20 times', there is no time limit, and the response 'Never' is pointless if they are actually coming out of the football ground.

### 9.7 The data-handling cycle

### **HOMEWORK 9H**

- 1 Secondary data
- 2 Primary data
- 3 Primary or secondary data
- 4 Primary data
- 5 Primary data

### 9.8 Other uses of statistics

### **HOMEWORK 9I**

- **1** 92.6, 96.1, 98.8, 100.6, 105.0
- **2** £55
- 3 That the general cost of living in 2010 increased by 2% of the costs in 2008.

## 9.9 Sampling

### **HOMEWORK 9J**

1 You will need to pick a sample from all ages.

You will need to ask a proportionate numbers of boys and girls.

Ask people with different interests, as sporty people may want to finish earlier.

- **2 a** Likely to have an interest in religion, so opinions may be biased
  - **b** This would be quite reliable as the sample is likely to be representative.
  - **c** Younger children will not like the same sorts of games as older students, so the sample is likely to give a biased result.
- **3 a** This is quite a good method. The sample is not random but should give reliable results.
  - **b** Not very reliable as people at a shopping centre are not likely to be sporty. Better to ask a random sample at different venues and different times.
  - **c** Not everyone has a phone; people don't like being asked in the evening. Need to do other samples such as asking people in the street.
- **4 a** About 10% of the population

b

| Year  | Boys | Girls | Total |
|-------|------|-------|-------|
| 7     | 16   | 14    | 30    |
| 8     | 16   | 16    | 32    |
| 9     | 14   | 16    | 30    |
| 10    | 15   | 16    | 31    |
| 11    | 13   | 14    | 27    |
| Total | 74   | 76    | 150   |

- 5 Not everyone has a phone. People may not travel by train every week. 200 may not be a big enough sample.
- **6 a** Good questions might include: How many times in a week, on average, do you have your lunch out of school? (Responses: 'Never', '1 or 2 times', '3 or 4 times' or 'every day')

|     | Boys | Girls |
|-----|------|-------|
| Y9  | 10   | 6     |
| Y10 | 9    | 9     |
| Y11 | 8    | 8     |

**7** 315

8 Find the approximate proportion of men and women, girls and boys, then decide on a sample size and base your work on the proportion of each group multiplied by the sample size.

## **Functional Maths Activity**

## Air traffic

1 Examples of diagrams to illustrate changes over a ten-year period are as follows. UK international air traffic





2 Students' research may vary, as will their diagrams. Examples of diagrams to show changes over the period 1980, 1990, 2000 are as follows.





**3** Extrapolating the data given in the table between 1980 and 1990 gives: Passengers in 2010 – approximately 145 (million)

Flights in 2010 – approximately 1400 (thousand) or 1.4 million However, looking at current data on the internet, the above 2010 estimates were already being approached in 2000 (cheap flights were introduced). Extrapolating the later data (up to 1999) gives: Passengers in 2010 – approximately 200 (million)

Flights in 2010 – approximately 2000 (thousand) or 2.0 million.

## 10 Algebra: Real-life graphs

## 10.1 Straight-line distance-time graphs





## **Functional Maths Activity**

## **Driving in the United States**

- **a** Approximately 3.6 litres in a US gallon
- b i About 936 litres
  - ii US fuel would cost \$551.20, which is about £344.50.UK fuel would cost £898.56, which is about £554.06 more.

## 11 Statistics: Statistical representation

## 11.1 Line graphs

### **HOMEWORK 11A**

1 a



- **b** 700 000 **c** 1985–1990
- **d** Reduction from 1970 to 1975, advent of video. Increase from 1980 to 2005, due to many multi-screen cinemas being developed.
- 2 a



- **b** 128
- **c** The same people keep coming back and tell others, but new customers each week becomes more difficult to find.
- **3** Students should use a graph to estimate 600 g.
- 4 All the temperatures were presumably higher than 10 degrees.

### 11.2 Stem-and-leaf diagrams

#### **HOMEWORK 11B 1 a** 4|78 5 | 3 4 5 7 7 8 6 | 0 0 2 2 2 7 7 **b** 67 g **c** 62 g **d** 20 g **a** 0|44888 2 1 | 1 4 7 8 8 9 2 | 0 1 2 3 3 **b** 23 8 С 3 **a** 6|89 7 0 0 1 3 4 5 6 9 9 8 0 0 1 4 5 5 7 9 9|2 **b** 79 **c** 24

- 4 For example, 5 | 4 means 54 kg and the girls' weights (on the right) while 3 | 6 shows 63 kg and the boys' weights (on the left).
- 5 Because every number in the data starts with a 2 and has only two digits

## 11.3 Scatter diagrams

### HOMEWORK 11C

1 a–b



- **c** 64 kg **d** 124 cm
- 2 **a–b** See the following graph.



4 133 miles

**5** Points showing a line of best fit sloping up from bottom left to top right.

## **Functional Maths Activity**

### Buying wine in the UK

Students' diagrams, measures and reports will vary.

## 12 Probability: Probabilities of events

### 12.1 Experimental probability

### HOMEWORK 12A

- **1 a** 0.2 0.3 0.36 0.42 0.384 **b** 0.4 **c** 2000
- **2 a** 0.16 0.253 0.142 0.17 0.103 0.168
  - **b** 100 **c** No, 2 occurs too often
- 3 a

| Red   | White | Blue  |
|-------|-------|-------|
| 0.31  | 0.52  | 0.17  |
| 0.272 | 0.48  | 0.248 |
| 0.255 | 0.508 | 0.238 |
| 0.254 | 0.504 | 0.242 |

**b** The last line of the relative frequency table is likely to be the closest to the truth because it results from the highest sample frequency (500). The likely ratio of balls in the bag is therefore R : W : B :: 127 : 252 : 121. We know there are 50 balls, so this likely ratio gives R : W : B :: 13 : 25 : 12. For example,  $(127/500) \times 50 = 13$  red balls (to the nearest whole number).

- 4 а С b Α С С d A f А В е В g a i ii 07 **iii** 0.6 5 0.2
- **b** 10
- 6 Monday 0.145; Tuesday 0.166; Wednesday 0.134; Thursday 0.141; Friday 0.146

7 The spinner could be considered unfair since the 3 only landed 31 times and the majority of the other numbers landed over the anticipated 40 times.

8 Although you would expect the probability to be close to  $\frac{1}{2}$ , hence 25 tails, we know that there is more chance of the number of tails being **close to** 25 rather than **actually** 25.

### 12.2 Mutually exclusive and exhaustive events

### HOMEWORK 12B

- 1 a Yes b Yes c Yes d No e No
- 2 Also exhaustive: **b** Throwing an even number with a dice/throwing an odd number with a dice.
- **3 a i**  $\frac{4}{11}$  **ii**  $\frac{2}{11}$  **iii**  $\frac{4}{11}$ 
  - b i Yes ii Yes iii Yes
  - c iii Picking an I / picking a consonant
- **4 a** Ann, Joan; Ann, Jack; Ann, John; Ann, Arthur; Ann, Ethel; Joan, Jack; Joan, John; Joan, Arthur; Joan, Ethel; Jack, John; Jack, Arthur; Jack, Ethel; John, Arthur; John, Ethel; Arthur, Ethel
  - **b i**  $\frac{1}{5}$  **ii**  $\frac{1}{5}$  **iii**  $\frac{4}{15}$ **iv**  $\frac{11}{15}$

- c i, ii, iv d ii 1 6 6 a i, iv, v b i Answers will vary regarding explanation about they are not mutually exclusive. 7 May be windy and rainy. Windy and rainy are not independent events.
- **8** 0.05

5

9 These are not mutually exclusive events.

## 12.3 Expectation

### **HOMEWORK 12C**

| 1  | 10 | 0                         |     |                             |     |                             |
|----|----|---------------------------|-----|-----------------------------|-----|-----------------------------|
| 2  | 25 | 0                         |     |                             |     |                             |
| 3  | а  | 52                        | b   | 8                           | С   | 4                           |
|    | d  | 2                         |     |                             |     |                             |
| 4  | 21 |                           |     |                             |     |                             |
| 5  | 16 | 67                        |     |                             |     |                             |
| 6  | а  | 100                       | b   | 100                         | С   | 130                         |
|    | d  | 0                         |     |                             |     |                             |
| 7  | 12 | 0                         |     |                             |     |                             |
| 8  | а  | One cannot add prob       | abi | lities for events like this | S.  |                             |
|    | b  | Increase, as he is mo     | re  | experienced                 |     |                             |
| 9  | а  | 33                        | b   | 83                          |     |                             |
| 10 | а  | 28 000                    | b   | 90% of 112 is 100.8 d       | out | of 200, so they should win. |
| 11 | Th | ree times                 |     |                             |     |                             |
| 12 | Μι | ultiply the number of stu | ude | nts by: 0.14                |     |                             |
|    |    |                           |     |                             |     |                             |
| 12 | .4 | Two-way tables            |     |                             |     |                             |
| нс | ME | WORK 12D                  |     |                             |     |                             |

| 1 | а | 9     | b | 16  | С | 40%  |
|---|---|-------|---|-----|---|------|
|   | d | 71.4% |   |     |   |      |
| 2 | а | 18%   | b | 13% | С | £170 |

**d** Female; there are about twice as many male students as female students, but two of the three highest categories have a much greater proportion of female earners.

|   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|----|----|----|----|----|----|----|----|
| 5 | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 6 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 8 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

```
b Most unlikely score: 7 or 18
c \frac{1}{10}
d \frac{37}{40}
e 0.5
\frac{20}{36}
```

5 Either Harold, as he had bigger tomatoes, or Connie, as she had more tomatoes.

## 12.5 Addition rule for events

## **HOMEWORK 12E**

4

| 1  | а   | $\frac{1}{2}$              | b     | $\frac{1}{6}$           | С    | $\frac{2}{3}$              |
|----|-----|----------------------------|-------|-------------------------|------|----------------------------|
| 2  | а   | 1<br>2                     | b     | 1<br>2                  | С    | 1                          |
| 3  | а   | $\frac{1}{13}$             | b     | $\frac{1}{13}$          | с    | 2<br>13                    |
| 4  | а   | $\frac{3}{10}$             | b     | $\frac{3}{10}$          | С    | 3<br>5                     |
| 5  | а   | $\frac{1}{3}$              | b     | 2<br>5                  | С    | 11<br>15                   |
|    | d   | 11<br>15                   | е     | $\frac{1}{3}$           |      |                            |
| 6  | а   | 0.75                       | b     | 0.6                     | С    | 0.25                       |
|    | d   | 0.6                        |       |                         |      | 0 F                        |
|    | е   | I Because 3 only o         | ccu   | rs on diue              | 11   | 0.5                        |
| 7  | а   | 3<br>5                     | b     | 4<br>5                  | С    | 3<br>5                     |
| 8  | а   | 3                          | b     | Not certain he has the  | ree  | double yolks to start with |
| 9  | а   | 11<br>15                   | b     | $\frac{2}{3}$           | С    | 0                          |
|    | d   | $\frac{2}{3}$              |       |                         |      |                            |
| 10 | а   | i 0.1                      | ii    | 0.75                    | iii  | 0.85                       |
|    | b   | 0.5                        |       |                         |      |                            |
|    | с   | 2 hours 6 minutes          |       |                         |      |                            |
| 11 | 8   |                            |       |                         |      |                            |
| 12 | ίNα | ot blue' and 'not yellow   | ' are | e not mutually exclusiv | e ev | vents.                     |
|    |     | -                          |       | -                       |      |                            |
| 12 | .6  | Combined events            |       |                         |      |                            |
| нс | ME  | WORK 12F                   |       |                         |      |                            |
| 1  | а   | $\mathbf{i} = \frac{1}{6}$ | ii    | $\frac{1}{4}$           | iii  | $\frac{1}{6}$              |
|    |     | 0                          |       | 4                       |      | U                          |

| 1 | а |                 | 6              | п | 4              | 111 | 6        |
|---|---|-----------------|----------------|---|----------------|-----|----------|
|   |   | iv              | $\frac{5}{36}$ | v | $\frac{1}{2}$  | vi  | 29<br>36 |
| 2 | а | $\frac{1}{6}$   |                | b | 11<br>36       | С   | 1<br>9   |
|   | d | $\frac{3}{4}$   |                | е | $\frac{1}{36}$ | f   | 11<br>36 |
|   | g | $\frac{10}{36}$ |                |   |                |     |          |

| - |   |                |       |                   |         |       |      |     |       |    |       |               |
|---|---|----------------|-------|-------------------|---------|-------|------|-----|-------|----|-------|---------------|
|   |   |                | 6     | -4                | -2      | 0     | 2    | 4   | 6     |    |       |               |
|   |   | dice           | 5     | -3                | -1      | 1     | 3    | 5   | 7     |    |       |               |
|   |   | puoc           | 4     | -2                | 0       | 2     | 4    | 6   | 8     |    |       |               |
|   |   | n sec          | 3     | -1                | 1       | 3     | 5    | 7   | 9     |    |       |               |
|   |   | ore o          | 2     | 0                 | 2       | 4     | 6    | 8   | 10    |    |       |               |
|   |   | Sc             | 1     | 1                 | 3       | 5     | 7    | 9   | 11    |    |       |               |
|   |   |                |       | 1                 | 2       | 3     | 4    | 5   | 6     |    |       |               |
|   |   |                |       | Scor              | e on s  | ecor  | h he | ice |       |    |       |               |
|   | а | 1              |       | 0001              | 0 011 0 | b     |      |     |       |    | С     | 1             |
|   | d | 12<br>1        |       |                   |         | •     | 1    | 3   |       |    |       | 2             |
|   | u | 6              |       |                   |         | е     | -    | 86  |       |    |       | 2             |
| 4 | а | $\frac{1}{2}$  |       |                   |         | b     | 1    | 2   |       |    | С     | $\frac{3}{4}$ |
| 5 | а | $\frac{1}{4}$  |       |                   |         | b     | 2    | 3   |       |    | С     | 7<br>8        |
| 6 | а | $\frac{1}{12}$ |       |                   |         | b     | -    | 1   |       |    |       |               |
| 7 | а | DD, 1          | TD, H | D, T <sup>-</sup> | Г, Н⊢   | I, TI | Н    |     |       |    |       |               |
|   | b |                |       |                   |         |       |      |     |       |    |       |               |
|   |   | Нуа            | cinth | 1                 | Dł      | H     |      |     | DH    |    | TH    | НН            |
|   |   | Tuli           | р     |                   | D       | Γ     |      |     | DT    |    | TT    | HT            |
|   |   | Daff           | iodil |                   | D       | D     |      |     | DD    |    | TD    | HD            |
|   |   | Daff           | odil  |                   | D       | )     |      |     | DD    |    | TD    | HD            |
|   |   |                |       |                   | Daff    | odil  |      | Da  | affod | il | Tulip | Hyacinth      |
|   | С | $\frac{1}{4}$  |       |                   |         |       |      |     |       |    |       |               |
|   | d | More           | daffo | odils             |         |       |      |     |       |    |       |               |
| 8 | а |                |       |                   | 1       | 1     |      |     | 1     | 7  |       |               |
|   |   |                | 1     | 2                 | 3       | 4     | •    | 5   | 6     | 4  |       |               |
|   |   | 1              | 2     | 3                 | 4       | 5     | 5    | 6   | 7     |    |       |               |

**b**  $\frac{1}{36}$ 

**c** 36

**d** Three times

9  $\frac{5}{16}$ 

**10** It's not possible to draw a diagram and there are many different events to list.

## **Functional Maths Activity**

### Lottery competition

- 1 0.000206 or 4845:1
- 2 Evie is incorrect. The order of the numbers does not matter. The probability is the same whichever four numbers are selected.
- 3 The company would expect to raise £2484 for charity. Company collects:  $870 \times 0.10 = £87$  per time, total  $87 \times 32 = £2784$ Number of wins expected =  $0.0002064 \times 870 \times 32 = 5.75$ , say 6 Winnings paid out =  $6 \times 50 = £300$ Amount to charity = £2784 - £300 = £2484

## 13 Algebra: Number and sequences

### 13.1 Number sequences

### HOMEWORK 13A

- **1 a** 12, 14, 16: + 2 **b** 15, 18, 21: + 3 **c** 32, 64, 128: × 2
  - d 33, 40, 47: + 7 e 30 000, 300 000, 3 000 000: × 10
  - f 25, 36, 49: square numbers
- 2 a 34, 55: add previous two terms
  - **b** 23, 30: add one more each time
- **3 a** 112, 224, 448: × 2
  - **b** 38, 45, 52: + 7
  - c 63, 127, 255: add twice the difference each time or × 2 + 1
  - d 30, 25, 19: subtract one more each time
  - e 38, 51, 66: add two more each time
  - f 25, 32, 40: add one more each time
  - **g** 13, 15, 16: + 2, + 1
  - h 20, 23, 26: + 3
  - i 32, 40, 49: add one more each time
  - j 0, -5, -11: subtract one more each time
  - **k** 0.32, 0.064, 0.012 8: ÷ 5
  - I 0.1875, 0.093 75, 0.046 875: ÷ 2
- **4 a** £290 **b** £490 **c** 6 **d** Four sessions plus 3 sessions cost 160 + 125 = 285
  - Seven sessions cost 255, so he would have saved £30
- **5** The fractions are  $\frac{2}{3}$ ,  $\frac{3}{5}$ ,  $\frac{4}{7}$ ,  $\frac{5}{9}$ ,  $\frac{6}{11}$ ,  $\frac{7}{13}$ ,  $\frac{8}{15}$ ,  $\frac{9}{17}$ , which as decimals are 0.6666, 0.6,

0.571..., 0.5555, 0.54545..., 0.5384..., 0.53333, 0.529..., so only  $\frac{3}{5}$  gives a

terminating decimal. The denominators that give terminating decimals are power of 5, i.e. 5, 25, 125, 625, and so on.

### 13.2 Finding the *n*th term of a linear sequence

### **HOMEWORK 13B**

| 1 | а | 2 <i>n</i> + 3      | b  | 4 <i>n</i> – 1         | С   | 5 <i>n</i> + 1 |
|---|---|---------------------|----|------------------------|-----|----------------|
|   | d | 6 <i>n</i> – 3      | е  | 3 <i>n</i> +1          | f   | 7 <i>n</i> – 4 |
| 2 | а | 101                 | b  | 201                    | С   | 253            |
|   | d | 296                 | е  | 152                    | f   | 345            |
| 3 | а | i 7 <i>n</i> – 2    | ii | 698                    | iii | 103            |
|   | b | i 2 <i>n</i> + 7    | ii | 207                    | iii | 99             |
|   | С | i 5 <i>n</i> – 3    | ii | 497                    | iii | 102            |
|   | d | i 4 <i>n</i> – 2    | ii | 398                    | iii | 98 or 102      |
|   | е | i 8 <i>n</i> – 3    | ii | 797                    | iii | 101            |
|   | f | i <i>n</i> + 5      | ii | 105                    | iii | 100            |
| 4 | а | $\frac{2n+1}{3n+2}$ | b  | 0.6, 0.625, 0.636, 0.6 | 643 |                |

|   | С | i 0                        | .6656        | ii | 0.667                 |       |         |
|---|---|----------------------------|--------------|----|-----------------------|-------|---------|
|   | d | 0.667                      | 7            |    |                       |       |         |
| 5 | а | i 1                        | 3            | ii | By adding the 8th and | l 9th | n terms |
|   | b | 4 <i>n</i> –               | 3            |    |                       |       |         |
| 6 | а | <b>2</b> <i>k</i> <b>+</b> | 2            | b  | 2 <i>k</i> + 3        | С     | 2k + 4  |
|   | d | <b>2</b> <i>k</i> <b>+</b> | 5            | е  | £2                    |       |         |
| 7 | а | 2 <i>n</i> +               | 1            | b  | 3n + 4                |       |         |
|   | С | i -                        | 2001<br>3004 | ii | 0.0.666111.           |       |         |

**d** No, as the bottom has a +4 and the top is only +1 so it will always be less than  $\frac{2}{3}$ 

### 13.3 Special sequences

### **HOMEWORK 13C**

- 1
   a
   Odd
   b
   Either
   c
   Even

   d
   Odd
   e
   Even
   f
   Odd
- g Even h Either 2 a 243, 729, 2187
  - **b** i  $3^n 1$  ii  $2 \times 3^n$
- **3 a** The numerical value of the powers is equal to the number of zeros after the decimal point.
  - **b** 6
- 4 a

| +     | Prime  | Odd    | Even   |
|-------|--------|--------|--------|
| Prime | Either | Either | Either |
| Odd   | Either | Even   | Odd    |
| Even  | Either | Odd    | Even   |

b

| ×     | Prime  | Odd    | Even |
|-------|--------|--------|------|
| Prime | Either | Either | Even |
| Odd   | Either | Odd    | Even |
| Even  | Even   | Even   | Even |

- **5 a** Student to draw equilateral triangle
  - **b** Perimeter is 36 cm
  - c Perimeter is 48 cm
  - **d** 64
  - e When n = 100, P =  $6.31 \times 10^{13} = 63139143790000$  cm or 631 million km

13.4 General rules from given patterns



## **Functional Maths Activity**

### Packaging

First identify the third arrangement. (1 mark) You can do this by drawing or by describing the size of the cuboid.

On the right, is a 1 by 2 by 4 cuboid.

Now work out the amount of string for any of the arrangements, for example, the cuboid.

(1 mark each for working and for correct answer)

Make sure it is clear which shape you are working out the amount of string for.

For the cuboid:

 $S = 2 \times 30 + 2 \times 30 + 4 \times 30 + 20 = 260$  cm Do the same for the two other shapes. (1 mark each)

For the 1 by 1 by 8:

 $S = 2 \times 120 + 2 \times 15 + 4 \times 15 + 20 = 350$  cm



For the 1 by 2 by 4:  $S = 2 \times 60 + 2 \times 30 + 4 \times 15 + 20 = 260 \text{ cm}$ 

Then write down a conclusion referring to the calculated values. (1 mark) Masood should pack either as a cube or a 1 by 2 by 4 package, as these both use the same length (260 cm) of string.

## 14 Algebra: Graphs and their equations

## 14.1 Linear graphs

## HOMEWORK 14A

- 1 Check student's straight-line graph with end points at: (0, 3) and (5, 13)
- **2** Check student's straight-line graph with end points at: (0, -1) and (5, 14)
- **3** Check student's straight-line graph with end points at: (0, -2) and (12, 4)
- 4 Check student's straight-line graph with end points at: (-2, -3) and (2, 5)
- **5** Check student's straight-line graph with end points at: (-6, 2) and (6, 8)
- **6** a Check student's straight-line graphs with end points at: (0, -1) and (5, 14), and (0, 3) and (5, 13)
  - **b** (4, 11)
- **7** a Check student's straight-line graphs with end points at: (0, -3) and (6, 21), and (0, 2) and (6, 20)
  - **b** (5, 17)
- 8 a Check student's straight-line graphs with end points at: (0, 1) and (12, 7), and (0, 2) and (12, 6)
  - **b** (6, 4)
- **9** a Check student's straight-line graphs with end points at: (0, 3) and (4, 11), and (0, -1) and (4, 7)
  - **b** No, the lines have the same gradient and so are parallel.
- 10 a

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| у | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

**b** Check student's graph of x + y = 3, through (0, 3) and (3, 0).

11 a

b 2 kilometres



**12** Two lines with a sum or difference  $(a \pm b)$  of 2, e.g. y = 1, x = 1, or x = 3, y = 5.

### HOMEWORK 14B

| 1 | а | 2              | b | -3            | С | $\frac{2}{3}$  |
|---|---|----------------|---|---------------|---|----------------|
|   | d | $-\frac{1}{3}$ | е | 4             | f | $-\frac{4}{5}$ |
|   | g | $-\frac{1}{4}$ | h | $\frac{1}{6}$ | i | 7              |
|   | j | -4             |   |               |   |                |

- **2 a**–**f** Check student's diagrams.
- 3 a and b i-viii Check student's diagrams.
  - c Check student's descriptions.
- 4 a Approximately 225 feet in 0.6 of a mile (3168 feet), so gradient is about 0.07
  - **b** Approximately 500 feet in 0.4 (2112 ft), so gradient is about 0.24
  - c Category AS; approximately 1000 feet of climbing in 3.1 miles ≈ 312 feet of ascent on average
- 5 First line has a gradient of 1.2 and second has a gradient of 4.8, so ratio is 1 : 4
- **6** 4:5,5:7,6:13,3:7,1:3,2:9

## 14.2 Drawing graphs by the gradient-intercept method

### HOMEWORK 14C

| 1 | a–          | I Check student's diagram                                               | (S).          |                                |     |                               |
|---|-------------|-------------------------------------------------------------------------|---------------|--------------------------------|-----|-------------------------------|
| 2 | а           | i-ii Check student's dia                                                | agra          | m.                             | b   | (-3, -7)                      |
| 3 | а           | Check student's diagram                                                 |               |                                | b   | $(\frac{1}{2}, 2\frac{1}{2})$ |
| 4 | a<br>b<br>c | They have the same grad<br>They intercept the <i>y</i> -axis<br>(0, -3) | dien<br>at th | t: (4)<br>ne same point: (0, - | -3) |                               |
| 5 | а           | -3                                                                      | b             | $\frac{1}{3}$                  | С   | 90°                           |
|   | d           | Negative reciprocal                                                     | е             | 2                              |     |                               |

### **HOMEWORK 14D**

**1 a–I** Check student's diagrams.



**3** The lines cross at: x = 2, y = 2



- **4 a** They both have a *y*-intercept of 3, so they intersect at: (0, 3)
  - **b** They both cross the *x*-axis (so they intersect) at: (3, 0)
  - **c** a = 3, b = -8, so 3x 8y = 12
- **5 a** i y = -3 ii x y = 4 iii y = x + 5iv x + y = -5**b** -2

### 14.3 Finding the equation of a line from its graph

### **HOMEWORK 14E**

**1 a** y = x + 2 **b** y = 3x - 1 **c** 5y = 2x + 4 **2 a i** y = x, y = -x **ii** Reflection in *x*- and *y*-axes **b i**  $y = \frac{1}{2}x + 2, y = -\frac{1}{2}x + 2$ **ii** Reflection in *y*-axis and y = 2

- **c** i 2y = 5x + 3, 2y = -5x + 13
  - **ii** Reflection in x = 1 and y = 4
- **3**  $y = 2x + 4, y = 2x 6, y = -\frac{1}{2}x + 4, y = -\frac{1}{2}x + \frac{3}{2}$
- **4** a The *x*-coordinates go  $-2 \rightarrow -1 \rightarrow 0$  and *y*-coordinates go  $5 \rightarrow 3 \rightarrow 1$ 
  - **b** The *x*-step between the points is 1 and the *y*-step is -2
  - **c** y = -3x + 2

## 14.4 Quadratic graphs

### **HOMEWORK 14F**

1 a

| x          | -3 | -2 | -1 | 0 | 1 | 2 | 3  |
|------------|----|----|----|---|---|---|----|
| $y = 2x^2$ | 18 | 8  | 2  | 0 | 2 | 8 | 18 |

**b** y = 4

| <b>c</b> ±2.2 |
|---------------|
|---------------|

2 a

| x             | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4  | 5  |
|---------------|----|----|----|----|----|---|---|---|----|----|----|
| $y = x^2 + 3$ | 28 | 19 | 12 | 7  | 4  | 3 | 4 | 7 | 12 | 19 | 28 |

**b** 
$$y = 9.2 \text{ or } 9.3$$
 **c**  $\pm 2.6$ 

3 a

| x                  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
|--------------------|----|----|----|---|---|---|---|---|
| $y = x^2 - 3x + 2$ | 20 | 12 | 6  | 2 | 0 | 0 | 2 | 6 |

**b** 8.75 **c** -0.15, 3.15

4 B and C

### 14.5 The significant points of a quadratic graph

### **HOMEWORK 14G**

| 1 | а                    |    |    |    |   |     |     |    |    |    |
|---|----------------------|----|----|----|---|-----|-----|----|----|----|
|   | x                    | -1 |    | 0  | 1 | 2   | 3   | 4  | 5  | 6  |
|   | $y = x^2 - 5x + 4$   | 10 | )  | 4  | 0 | -2  | -2  | 0  | 4  | 10 |
|   | <b>b</b> 1, 4        |    |    |    |   |     |     |    |    |    |
| 2 | а                    |    |    |    |   |     |     |    |    |    |
|   | x                    | -1 | 0  | 1  | 2 | 2 3 | 3 4 | 5  | ]  |    |
|   | $y = x^2 - 3x + 2$   | 6  | 2  | 0  | C | ) 2 | 2 6 | 12 |    |    |
|   | <b>b</b> 1, 2        |    |    |    |   |     |     |    |    |    |
| 3 |                      |    |    |    |   |     |     |    |    |    |
|   | x                    | -  | -5 | -4 |   | -3  | -2  | -1 | 0  | 1  |
|   | $y = x^2 + 4x - 6$   | -  | -1 | -6 | 5 | -9  | -10 | -9 | -6 | -1 |
|   | <b>b</b> 1.15, –5.15 |    |    |    |   |     |     |    |    |    |

2

5 a (0, 4) b (2.5, -2.25)  
6 a (-2, -10)  
b 
$$(x + 2)^2 - 10 = 0$$
  
c The minimum point is (-a, -b)  
d (-3, -14)  
7  $y = (x - 2)^2 - 6$ ,  $y = x^2 - 4x + 4 - 6$ ,  $y = x^2 - 4x - 2$ 

# **Problem-solving Activity**

### **Drawing linear graphs**

- **a–c** In all three of these, check student's drawings; the lines are at 90° to one another.
- **d** For each pair of lines, the gradients are reciprocals and of opposite sign.
- **e** The gradients of perpendicular lines are the negative reciprocals of one another.

## 15 Algebra: Inequalities and regions

## 15.1 Solving inequalities

| HC | HOMEWORK 15A      |                              |      |                        |     |                      |  |  |  |  |
|----|-------------------|------------------------------|------|------------------------|-----|----------------------|--|--|--|--|
| 1  | а                 | <i>x</i> < 5                 | b    | <i>t</i> > 8           | С   | <i>p</i> ≥ 8         |  |  |  |  |
|    | d                 | <i>x</i> < 3                 | е    | $y \leq 6$             | f   | <i>t</i> > 9         |  |  |  |  |
|    | g                 | <i>x</i> < 13                | h    | <i>y</i> ≤ 11          | i   | $t \ge 37$           |  |  |  |  |
|    | j                 | <i>x</i> < 10                | k    | <i>x</i> ≤ 2           | I   | $t \geq \frac{7}{4}$ |  |  |  |  |
|    | m                 | $x \ge -6$                   | n    | <i>t</i> ≤ 4           | 0   | $y \le 6$            |  |  |  |  |
|    | р                 | $x \ge \frac{1}{2}$          | q    | $w \leq 3.5$           | r   | $x \leq \frac{5}{8}$ |  |  |  |  |
| 2  | а                 | 5, 4, 3, 2, 1                | b    | No answer              | С   | 25, 16, 9, 4, 1      |  |  |  |  |
|    | d                 | 5, 3, 1                      | е    | 7, 5, 3, 2             |     |                      |  |  |  |  |
| 3  | <b>3</b> <i>x</i> | + $3.50 < 6$ , $3x < 2.50$ ; | so t | he most a can could ha | ave | cost was 83p         |  |  |  |  |
|    |                   | <u> </u>                     |      | A A                    |     | <b>•</b> •           |  |  |  |  |

| 4 | а | 2 < <i>x</i> < 3         | b | 1 < <i>x</i> < 4          | С | -2 < x < 4                  |
|---|---|--------------------------|---|---------------------------|---|-----------------------------|
|   | d | $2 \le x < \frac{19}{3}$ | е | $3.5 \le x < 7.5$         | f | $\frac{1}{2} \le x < 3.75$  |
|   | g | $2 \le x \le 4$          | h | $\frac{5}{2} \le x \le 8$ | i | $\frac{4}{5} \le x \le 4.2$ |

- 5 6x-2 > 10, so x > 2 or 6x-2 < 16, so x < 3; hence the sides are 2 by 3 or 3 by 5, so the area is between 6 cm<sup>2</sup> and 15 cm<sup>2</sup>
- **6 a i** x > 0, x = 2, x < 9
  - ii  $x = 3, x \ge 3, x < 2$
  - **b** Any value between 3 (inclusive) and 9 (not included)

### **HOMEWORK 15B**

**1** Top row from left to right:  $x \ge 1$ ; x < 2; x > -2Second row from left to right:  $x \le 0$ ; x > -5;  $x \ge -1$ 





**b** Because 2 CDs plus the lipstick cost less than £20;  $x \le 6.5$ 



**d** £6

- 5 Any two inequalities that overlap only on the integers 5, 6, 7 and 8; for example,  $x \ge 5$  and x < 9
- 6 Number being described: 3 7 a  $x > \frac{4}{5}$  b  $x \le 3$  c  $x \ge \frac{19}{4}$ d x < 6.5 e  $x \le \frac{1}{2}$  f x > -2g  $x \ge -7$  h  $x \le -\frac{2}{5}$

## 15.2 Graphical inequalities

### **HOMEWORK 15C**







© HarperCollinsPublishers 2010

6 a–b







8 a–b



9 a



iii Yes

10 a



**b** (1, 2) (2, 2) (2, 3)

**11** For example,  $y \ge 1$ ,  $x \le 2$  and  $y \le x$ . There are many other valid answers.

12 May be true (M): a, c, d, g

False (F): **b**, **e** Must be true (T): **f**, **h** 

### **Functional Maths Activity**

### League champions

- 1 It is likely that *w* represents the number of wins and *d* the number of draws.
- **2** The total number of games cannot be greater than 4, hence  $w + d \le 4$ . The number of points must be 8 or more, they score 3 for a win, 1 for a draw, hence  $3w + d \ge 8$ . The shaded area is the region that satisfies these two inequalities.
- 3 In four games, they need to score at least 8 points.
- 4 The team would still need to score at least 8 points, but now they have five games in which to do it.

The inequalities would be  $w + d \le 5$  and  $3w + d \ge 8$  (unchanged).

The lines would be draw for the equations w + d = 5 – shifted up to go through (0, 5) and (5, 0) and 3w + d = 8 (unchanged) and the area between them would be shaded.