CONTENTS

Introduction

Planning an investigation

Chapter 1 – Planning an investigation 5 The data handling cycle 11 5

1.2 Planning an investigation

Data collection

Chapter 2 - Collection of data

Types of data 2.1 2.2 Obtaining data 12

Chapter 3 – Sampling 14

3.1 Sampling 14

Chapter 4 – Conducting a survey or experiment

- 41 Surveys, questionnaires and interviews
- 4.2 Census data

Tabulation

Chapter 5 – Tabulation

5.1	Tally charts and frequency tables
5.2	Grouped frequency tables
5.3	Two-way tables

Diagrammatic representation

4

6

8

8

18

18

21

23

23

26

30

Chapter 6 – Diagrammatic representation 33 6.1 Pictograms, line graphs and bar charts 33 6.2 Pie charts 36 6.3 Misleading graphs 38 6.4 Choropleth maps 40 6.5 Stem-and-leaf diagrams 44 6.6 Histograms and frequency polygons 46 6.7 Cumulative frequency graphs 50

Data analysis

Cha	pter 7 – Measures of central tendency	54
7.1	The mode	54
7.2	The median	56
7.3	The mean	59
7.4	Which average to use	62
7.5	Grouped data	65
7.6	The weighted mean	69

Cha	pter 8—Measures of dispersion	71	Prob
8.1	Box-and-whisker plots	71	Chapte
8.2	Variance and standard deviation	74	12.1
8.3	Properties of frequency distributions	78	12.2
Cha	pter 9 — Statistics used in everyday life	83	12.3
9.1	Statistics used in everyday life	83	12.4
Cha	pter 10 — Times series and quality assurance	86	12.5 12.6
10.1	Time series and moving averages	86	12.7
10.2	Quality assurance	91	12.8
Cha	pter 11 – Correlation and regression	94	Deel li
11.1	Scatter diagrams and correlation	94	Real-li Mappi
11.2	Spearman's rank correlation coefficient	96	maph

Probability

	71	Chap	ter 12 – Probability	100
	74	12.1	Probability scale	100
าร	78	12.2	Equally likely outcomes	102
		12.3	The addition rule for events	104
	83 83	12.4	Experimental probability	106
	00	12.5	Combined events	109
)	86	12.6	Expectation	111
5	86	12.7	Tree diagrams	113
	91	12.8	Conditional probability	117
I	94 94		life Statistics ping chart	119 126
	96			

2

Collection of data

2.1 Types of data

Quick reminder

Primary data is data that has been collected by the person who is going to use it.

Secondary data is data that has not been collected by the person who is going to use it, e.g. from published databases.

Raw data is data that has been collected but not been sorted or processed in any way.

Data is either qualitative or quantitative.

Qualitative data describes the quality of a variable and is not numerical, e.g. yes/no answers, colour, type of pet.

Quantitative data is numerical, e.g. number of pets, distance travelled to work.

Quantitative data can be either **discrete** or **continuous**.

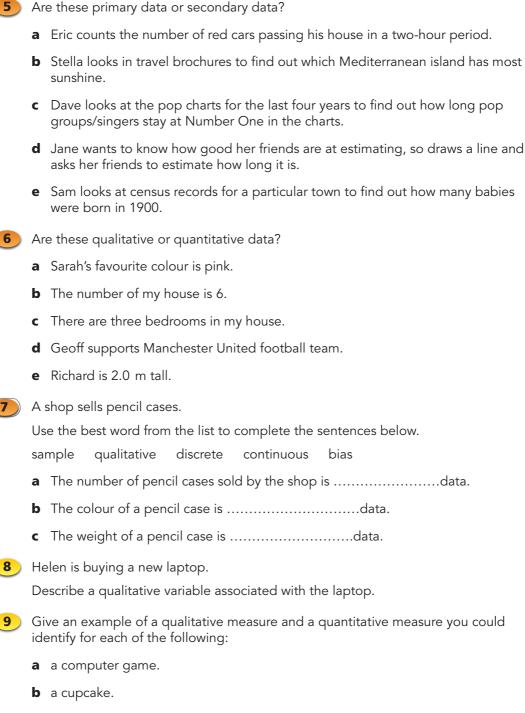
Discrete data is data that can be counted and can only take particular values, e.g. number of pets, shoe size.

Continuous data is data that can be measured, and can take any value on a scale, e.g. distance to work, height, time taken to complete a task.

When you want to explore links between two **variables** (e.g. height and weight), data is collected in pairs for the two variables. This is called **bivariate data**.

Exercise 2A

Sophie wants to find out about local weather by looking at newspaper reports for the last year. Is this primary or secondary data?


Anil wants to find out what his classmates' favourite football teams are. Is this variable qualitative or quantitative?

Sharna wants to measure the heights of 50 people. Is this variable discrete or continuous?

Mitchell conducts a survey in his local town centre in order to find out about popular TV programmes. Is his data primary data or secondary data?

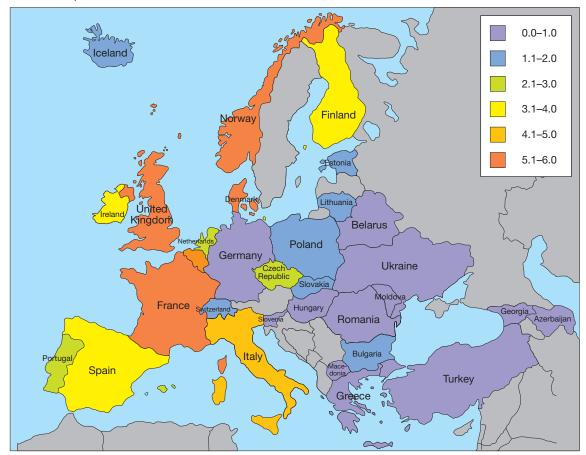
c a tracksuit top.

EQ

6.4 Choropleth maps

Quick reminder

Choropleth maps are maps in which areas are shaded differently, to illustrate a distribution.


Every map should have a 'key' that makes sense of the data. Remember to study this carefully before answering a question.

Exercise 6D

The Choropleth map shows the car thefts per 1000 people per country per year in Europe.

AO3

- **a** Which is the only country to have between 4.1 and 5.0 cars stolen per 1000 people?
- **b** How many cars per 1000 people are stolen in Spain?
- c How could you improve on the way the information is displayed on this map?

Diagrammatic representation: Chapter 6 Diagrammatic representation

Part of a coral reef is subdivided into square sections.

The number of different species of fish passing each square in an hour is shown in the table below.

24	20	23	22	18	19
26	23	19	21	10	18
39	33	30	22	9	6
25	21	24	21	17	19

a Use the key to produce a Choropleth map illustrating the data. Key

- Part of the coral reef has been damaged by fishermen using dynamite.Draw a line around the area where you think the coral has been damaged.
- c Explain your answer to part b.
- **d** One area is regularly visited by divers who feed the fish they see. Draw a line around this area.
- e Explain your answer to part d.
- 10 6 3 3 3 9 12 13 4 4 10 11 11 19 14 12 13 14 15 19 12 12 12 10

A forest is subdivided into square sections.

The number of different species of birds in each section is shown in each square of the table.

a Use the key to produce a Choropleth map illustrating the data. Key

b Part of the forest has been cut down and the trees removed for their wood.

Draw a line around the area where you think the trees have been cut down and removed.

- c Explain your answer to part b.
- **d** One area of the forest has very fertile soil and a lot of trees grow there. Draw a line around this area.

AO3

AO4

AO3

AO4

Measures of central tendency

7.1 The mode

Quick reminder

The **mode** of a list of data is the number that occurs most often. So, for a frequency distribution, the mode is the number with the highest frequency.

Exercise 7A

1	Fin	d the	e mo	de d	of ea	ach	of t	hes	e lis	sts d	of data:	AO3
	а	2 3	4	4	5	8						
	b	23	3	4	5	5	5	7				
	c	1 6	2	6	7	8	2	1	5	6	9	
2	A t we		er as	sked	12	chil	dre	n ho	I WC	mar	ny brothers and sisters they had. The results	AO3
	0	3 () 1	1	2	0	4	2	1	0	3	
	Wh	nat w	as th	e m	ode	?						
3	The	e cos	t of a	a ca	rton	of	mill	c in	ten	sup	permarkets was:	A03
	85p	5 8 [,]	4р	90p	8	6р	84	р	95p	С	86p 85p 87p 86p	
	Wh	nat is	the	moc	dal c	cosť	?					
4	The	ere a	re th	ree	diffe	erer	nt le	tter	's in	the	e word BANANA.	AO3
	Wh	nich is	s the	mo	dal	lett	er?					
5		rnie o ults.	does	a sı	urve	y oı	n th	e m	ake	es o	f cars in the school car park. Here are her	A03
	Vau		l Vau	ixha	ll Se	eat \	Vau	xha			Volvo Seat Vauxhall VW VW Vauxhall ıbishi Seat Ford Mitsubishi Jaguar VW	
	Wh	nat is	the	moc	dal r	nak	e of	cai	?			

Data analysis: Chapter 7 Measures of central tendency

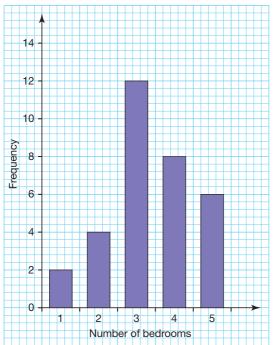
AO3

AO3

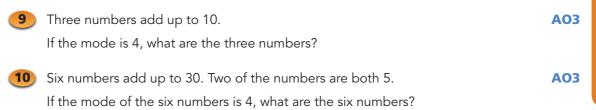
6

For each of the frequency tables below, calculate the mode:

а	x	3	4	5	6		
	f	14	10	7	3		
b	x	4	6	8	10	12	
	f	2	11	12	14	6	
c	x	5	10	15	20	25	30
	f	6	12	11	15	12	5


7 The table below shows the number of goals scored last season by a football team: AO3

Number of goals	0	1	2	3	4	5	6	7
Frequency	8	15	12	5	2	0	0	1


What was the modal number of goals scored?

This bar chart shows the number of bedrooms in the houses in a street.

There are four two-bedroom houses. What is the modal number of bedrooms?

How are Statistics used by ...

... Sports recruiters?

The job

Did you ever wonder who negotiated that deal for the new striker on your favourite football team? Behind those trades, deals and new teammates are professional agents, scouts, and managers. These strategists work to source players for clubs and teams using their knowledge of the industry, the players, the club and the world of sport.

You could be:

- An agent
- A scout
- A manager
- A coach

The maths

Sports recruiters, athletic agents and even team coaches use maths every day. Player and team statistics are valuable resources for recruiters to make suitable club/ player pairings. These stats are analysed, compared, deconstructed, used to forecast and serve to rank each player within a pool of candidates.

The profile

Chris has a BSc in Sports Science. He began coaching a local football team when he graduated from university. Under his guidance, the team went from only 12 players to over 25 and within two years he had led them to a regional championship. That is when Chris began to consider a career in recruitment. Today, Chris is the leading international scout for a major premiership team.

GIVE IT A TRY!

Chris is charged with filling an urgent position on a premiership football team. The coaches and managers have asked for an attacking player who can also fit into midfield and create chances. The table opposite shows three premiership players available to purchase in the

January transfer window along with their cost and performance statistics from the previous season. Use the data to produce graphs and calculations that Chris can present to the manager in order for him to make an informed choice. After the presentation, the manager buys one of the players. Which player did Chris recommend the manager buy and why?

Players	Fernando	Joe	Jamie
Goals	19	16	23
Assists	10	16	12
Appearances out of 38 possible	36	25	37
Cost in Millions £	30	18	21
Tackles made	50	200	150
Yellow cards	5	2	0
Red cards	3	1	0
Pass completion %	72	89	80

The manager is impressed with Chris' recommendations and asks him to do a detailed analysis of two of his current strikers' performances over several years because he is thinking of selling one of them. Do a statistical analysis of both players and produce a presentation.

Wayne

Year	Age	Apps	Goals	Assists
2006/7	21	35	14	20
2007/8	22	27	12	13
2008/9	23	30	12	9
2009/10	24	32	26	11
2010/11	25	16	4	10

Didier

Didier				
Year	Age	Apps	Goals	Assists
2006/7	28	36	20	3
2007/8	29	19	8	8
2008/9	30	24	5	5
2009/10	31	32	29	12
2010/11	32	24	10	10

Did you know that SPORT was so dependent upon STATISTICS?

How are Statistics used by ... Intelligence agencies?

The job

There is a constant stream of information or 'intelligence' to be considered where economic and national security are concerned. Those professionals who are charged with finding, understanding, interpreting and assessing secret information are called Intelligence Analysts. They handle the biggest threats to the UK and provide important support to the armed forces.

You could be:

- An intelligence officer
- An intelligence analyst
- An operational officer
- A language specialist
- A security consultant

The maths

Intelligence information does not always reach an analyst's desk in an organised and straight-forward way They must clearly assemble all the facts so they can analyse it efficiently and precisely. Analysts constantly use probability, approximations, sampling, etc. to take what little they know and determine the likely implications.

The profile

Armin is an intelligence officer. His specialty is signals intelligence, where he helps decode and understand messages intercepted from all over the world. With an MA in Modern Languages, Armin never thought he was much of a maths person. However, his fluency in several languages is a vital resource for his work. Since joining the intelligence world, Armin has travelled all over the globe and been involved in projects directly responsible for counteracting terrorism and organised crime within the UK and abroad.

GIVE IT A TRY!

- a Armin is investigating complaints that a new satellite phone is not working in temperatures of above 50 °C. He knows that there are 20 areas where the phones are being used with approximately 200 phones in each location. Describe how he could determine a sample of phones to test whether or not the complaints are valid.
 - **b** If Armin finds that 5% of phones fail in these conditions, find the probability that if ten phones are used to make calls, no more than three of them fail.

Did you know that SECURITY was so dependent upon STATISTICS?

Mapping chart

GCSE Statistics Edexcel Practice book	Page	GCSE Statistics Edexcel Student Book	Page
Chapter 1 – Planning an investigation		Chapter 1 – Planning an investigation	
1.1 The data handling cycle	5	1.1 The data handling cycle	8
1.2 Planning an investigation	6	1.2 Planning an investigation	10
Chapter 2 – Collection of data		Chapter 2 – Collection of data	
2.1 Types of data	8	2.1 Types of data	16
2.2 Obtaining data	12	2.3 Data sources	26
Chapter 3 – Sampling		Chapter 3 – Sampling	
3.1 Sampling	14	3.1 Sampling	36
Chapter 4 – Conducting a survey or experiment		Chapter 4 – Conducting a survey or experiment	
4.1 Surveys, questionnaires and interviews	18	4.1 Surveys	54
4.2 Census data	21	4.2 Questionnaires	58
Chapter 5 – Tabulation		Chapter 5 – Tabulation	
5.1 Tally charts and frequency tables	23	5.1 Tally charts and frequency tables	74
5.2 Grouped frequency tables	26	5.2 Grouped frequency tables	77
5.3 Two-way tables	30	5.3 Two-way tables	81
Chapter 6 – Diagrammatic representation		Chapter 6 – Diagrammatic representation	
6.1 Pictograms, line graphs and bar charts	33	6.1 Pictograms, line graphs and bar charts	94
6.2 Pie charts	36	6.2 Pie charts	111
6.3 Misleading graphs	38	6.3 Misleading graphs	118
6.4 Choropleth maps	40	6.4 Choropleth maps	124
6.5 Stem-and-leaf diagrams	44	6.5 Stem-and-leaf diagrams	131
6.6 Histograms and frequency polygons	46	6.6 Histograms and frequency polygons	136
6.7 Cumulative frequency graphs	50	6.7 Cumulative frequency graphs	146
Chapter 7 – Measures of central tendency		Chapter 7 — Measures of central tendency	
7.1 The mode	54	7.1 The mode	172
7.2 The median	56	7.2 The median	174

GCSE Statistics Edexcel Practice book	Page	GCSE Statistics Edexcel Student Book	Page
7.3 The mean	59	7.3 The mean	179
7.4 Which average to use	62	7.4 Which average to use	183
7.5 Grouped data	65	7.5 Grouped data	188
7.6 The weighted mean	69	7.6 The weighted mean	192
Chapter 8 – Measures of disperson		Chapter 8 – Measures of disperson	
8.1 Box-and-whisker plots	71	8.1 Box-and-whisker plots	204
8.2 Variance and standard deviation	74	8.2 Variance and standard deviation	210
8.3 Properties of frequency distribution	78	8.4 Properties of frequency distribution	217
Chapter 9 — Statistics used in everyday life		Chapter 9 — Statistics used in everyday life	
9.1 Statistics used in everyday life	83	9.1 Statistics used in everyday life	234
Chapter 10 — Times series and quality assurance		Chapter 10 — Times series and quality assurance	
10.1 Times series and moving averages	86	10.1 Moving averages	248
		10.2 Time series	256
10.2 Quality assurance	91	10.3 Quality assurance	264
Chapter 11 – Correlation and regression		Chapter 11 – Correlation and regression	
11.1 Scatter diagrams and correlation	94	11.1 Scatter diagrams and correlation	286
11.2 Spearman's rank correlation coefficient	96	11.2 Spearman's rank correlation coefficient	297
Chapter 12 – Probability		Chapter 12 – Probability	
12.1 Probability scale	100	12.1 Probability scale	316
12.2 Equally likely outcomes	102	12.2 Equally likely outcomes	318
12.3 The addition rule for events	104	12.3 The addition rule for events	323
12.4 Experimental probability	106	12.4 Experimental probability	328
12.5 Combined events	109	12.5 Combined events	334
12.6 Expectation	111	12.6 Expectation	338
12.7 Tree diagrams	113	12.8 Tree diagrams	350
12.8 Conditional probability	117	12.9 Conditional probability	357