CONTENTS

Intr	Introduction		Di	Diagrammatic representation			
Pl	anning a strategy		Cha	pter 6 – Diagrammatic representation	33		
Cha	pter 1 – Planning a strategy	5	6.1	Pictograms, line graphs and bar charts	33		
1.1	The data handling cycle	5	6.2	Pie charts	36		
1.2	Planning an investigation	6	6.3	Misleading graphs	38		
Da	ata collection		6.4	Choropleth maps	40		
Cha	pter 2 – Collection of data	8	6.5	Stem-and-leaf diagrams	4 4		
2.1	Types of data	8	6.6	Histograms and frequency polygons	46		
2.2	Obtaining data	12	6.7	Cumulative frequency graphs	50		
Cha	pter 3 — Sampling	14					
3.1	Sampling	14	Da	ata analysis			
Cha	pter 4 – Conducting a survey or experiment	18	Cha	pter 7 – Measures of location	54		
4.1	Surveys, questionnaires and interviews	18	7.1	The mode	5 4		
4.2	Census data	21	7.2	The median	56		
			7.3	The mean	59		
la	bulation		7.4	Which average to use	62		
Cha	pter 5 – Tabulation	23	7.5	Grouped data	65		
5.1	Tally charts and frequency tables	23		·	-		
5.2	Grouped frequency tables	26	7.6	The geometric mean	69		
5.3	Two-way tables	30					

Cha	pter 8 – Measures of spread	71	Pro	bability	
8.1	Box-and-whisker plots	71	Chap	ter 12 – Probability	100
8.2	Variance and standard deviation	74	12.1	Probability scale	100
8.3	Properties of frequency distributions	78	12.2	Equally likely outcomes	102
Cha _l	pter 9 – Statistics used in	02	12.3	The addition rule for events	104
9.1	everyday life Statistics used in everyday life	83	12.4	Experimental probability	106
			12.5	Combined events	109
una	pter 10 — Times series and quality assurance	86	12.6	Expectation	111
10.1	Time series and moving averages	86	12.7	Tree diagrams	113
10.2	Quality assurance	91	12.8	Conditional probability	117
Cha _l	pter 11 – Correlation and	0.4			
	regression	94	Real-	life Statistics	119
11.1	Scatter diagrams and correlation	94	Mapı	ping chart	126
11.2	Spearman's rank and product moment correlation coefficients	96			

4

Conducting a survey or experiment

4.1

Surveys, questionnaires and interviews

Quick reminder

Data for an investigation is often collected by completing a **survey**. This can be done either through **observation**, **questionnaire** or an **interview**. Choosing the correct method for the investigation is essential.

A **pilot survey** (trial) is often completed to check that the questions are correct and will give the required information before the main survey is undertaken. Questions need to be clear with no **bias**.

Survey type	Advantages	Disadvantages
Observation	Easy to collect data	Limited data can be collected
	Potentially large amount of data can	No follow up
	be collected	Lack of detail
		Observer may need to be trained – cost
Questionnaire	Low cost	Low response rate from mail surveys
	Large numbers of participants	Lack of detail
	Easy analysis	
	Can be done online	
Interview	Personal contact	Time consuming
	Ability to probe and ask follow-up questions	High cost, including training the interviewer
	Detailed answers	People don't like unsolicited telephone interviews

Definitions

A **respondent** is someone who takes part in a survey.

A pilot survey is conducted on a small sample to test the design and methods of the survey.

A **questionnaire** is a set of questions designed to obtain data.

An **open question** is one that has no suggested answers.

A **closed question** has a set of answers for the respondent to choose from. This may be through, for example, tick boxes or a sliding scale.

Whenever I can

Exercise 4A

4

- 1 A council included this question in a questionnaire:

 'Do you agree that the new one way system is a good idea?'

 Give one criticism of this question.
- The council want to know how many people use each type of recycling bin provided in a local car park. There are bins for glass, tins, paper and plastic.

Design a data collection sheet that will allow you to capture data while at the car park. Remember to include the number of people as well as the type of recycling.

3 Ellie is writing a questionnaire about people's ages. This is one question from her questionnaire.

How old are you	ı?	
Young	Middle aged	Old
	ism of this question? estion to make it a good	d question.
Edward is carrying	g out a survey about rug	by teams. This is one question from his survey.
How often do y	ou watch a rugby match	?

Once a week

- **a** Give a reason why this is not a good question.
- **b** Rewrite the question to make it a good question.
- **EQ 5** Krishan receives a questionnaire in the post about a new local leisure centre.

Three of the questions are shown below.

Give one criticism of each question.

Less than once a week

Question 1:

How often have you exercised in the last 6 months?

Question 2:

How much do you earn each year? Please tick one box.

Question 3:

If you have already used our leisure centre, give one reason why you enjoyed using it.

7 a Criticise the following questionnaire question:

Approximately how tall are you?

- **b** Rewrite the question to include response boxes.
- **8** Give **two** advantages and **two** disadvantages of using an interview to gather data.
- **9** Write a question for a questionnaire designed to find out how much people weigh.
- A report in a medical journal claims that people weigh more in the morning than in the evening. Design a simple statistical experiment to test this claim.
- **EQ** 11 Max wants to open a shop in the village where he lives.

To find out the views of local people, he delivers a questionnaire to every house in the village.

- a The questionnaire includes a closed question about the respondent's age.
 - i Explain what is mean by a closed question.
 - ii Give one advantage of using a closed question for age.
- **b** Only 14% of the questionnaires are returned to Max.

How might Max have improved the response rate?

The returned questionnaires showed that some of his questions had been badly worded.

What should Max have done before he delivered his questionnaire to avoid this problem?

d One of Max's questions was:

'How often do you go shopping?'

Give **two** criticisms of this question.

A large sports company with 170 shops wants to obtain information about sales.

They decide to send out a questionnaire to all shops, but first carry out a pilot survey.

What are the advantages of conducting a pilot survey?

- 13 You need to carry out a survey to find out how much money people will spend on a holiday.
 - **a** Give one reason why you might choose to carry out a personal interview rather than a postal survey.
 - **b** Give one reason why you might not choose to conduct a personal survey.
 - Give one advantage and one disadvantage of conducting an online survey about holidays.

14) Forty white van drivers were asked to complete this questionnaire.

<u> </u>	<u> </u>
Throw a coin.	
If it shows a HEAD, tick the YES box below.	
If it shows a TAIL, answer the question 'DO WORK?'	YOU EVER SPEED WHEN DRIVING FOR
Yes No	

- a How many HEADS would you expect?
- **b** If all the drivers speed, how many forms will have the 'YES' box ticked?
- c If no drivers speed, how many forms would you expect to have the 'YES' box ticked?
- **d** When the forms are returned, 32 have the 'YES' box ticked. Estimate the number of drivers who speed when driving for work.
- e What is the advantage of using a questionnaire like this?

Census data

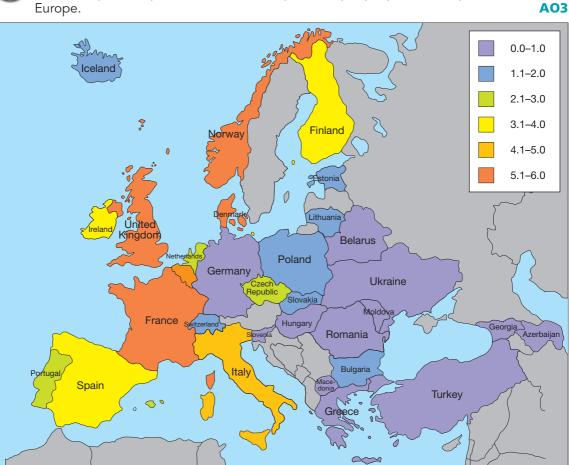
Quick reminder

What's the difference between a census and a survey?

A census collects data from everyone or everything in a population, whereas a survey collects data from a sample of the population as a whole.

	Advantages	Disadvantages
Census	Takes the whole population into account Accurate data Unbiased (as all asked)	Expensive Time consuming Can be difficult to make sure you have responses from the whole population Large quantity of data produced
Survey	Cheaper Less time consuming A more manageable amount of data produced	Not completely representative of whole population Sampling method may inadvertently introduce bias

6.4 Choropleth maps


Quick reminder

Choropleth maps are maps in which areas are shaded differently, to illustrate a distribution.

Every map should have a 'key' that makes sense of the data. Remember to study this carefully before answering a question.

Exercise 6D

1 The Choropleth map shows the car thefts per 1000 people per country per year in Europe.

- **a** Which is the only country to have between 4.1 and 5.0 cars stolen per 1000 people?
- **b** How many cars per 1000 people are stolen in Spain?
- c How could you improve on the way the information is displayed on this map?

Part of a coral reef is subdivided into square sections.

The number of different species of fish passing each square in an hour is shown in the table below.

A04

24	20	23	22	18	19
26	23	19	21	10	18
39	33	30	22	9	6
25	21	24	21	17	19

a Use the key to produce a Choropleth map illustrating the data. Key

A03

- **b** Part of the coral reef has been damaged by fishermen using dynamite. Draw a line around the area where you think the coral has been damaged.
- **c** Explain your answer to part **b**.
- **d** One area is regularly visited by divers who feed the fish they see. Draw a line around this area.
- e Explain your answer to part d.
- A forest is subdivided into square sections.

10	6	3	3	3	9
13	12	4	4	10	11
11	19	14	12	14	13
15	19	12	12	12	10

The number of different species of birds in each section is shown in each square of the table.

A04

a Use the key to produce a Choropleth map illustrating the data. Key

A03

- **b** Part of the forest has been cut down and the trees removed for their wood. Draw a line around the area where you think the trees have been cut down and removed.
- **c** Explain your answer to part **b**.
- **d** One area of the forest has very fertile soil and a lot of trees grow there. Draw a line around this area.

How are Statistics used by ...

... Sports recruiters?

The job

Did you ever wonder who negotiated that deal for the new striker on your favourite football team? Behind those trades, deals and new teammates are professional agents, scouts, and managers. These strategists work to source players for clubs and teams using their knowledge of the industry, the players, the club and the world of sport.

You could be:

- An agent
- A manager
- A scout
- A coach

The maths

Sports recruiters, athletic agents and even team coaches use maths every day. Player and team statistics are valuable resources for recruiters to make suitable club/ player pairings. These stats are analysed, compared, deconstructed, used to forecast and serve to rank each player within a pool of candidates.

The profile

Chris has a BSc in Sports Science. He began coaching a local football team when he graduated from university. Under his guidance, the team went from only 12 players to over 25 and within two years he had led them to a regional championship. That is when Chris began to consider a career in recruitment. Today, Chris is the leading international scout for a major premiership team.

GIVE IT A TRY!

Chris is charged with filling an urgent position on a premiership football team. The coaches and managers have asked for an attacking player who can also fit into midfield and create chances. The table opposite shows three premiership players available to purchase in the

January transfer window along with their cost and performance statistics from the previous season. Use the data to produce graphs and calculations that Chris can present to the manager in order for him to make an informed choice. After the presentation, the manager buys one of the players. Which player did Chris recommend the manager buy and why?

Players	Fernando	Joe	Jamie
Goals	19	16	23
Assists	10	16	12
Appearances out of 38 possible	36	25	37
Cost in Millions £	30	18	21
Tackles made	50	200	150
Yellow cards	5	2	0
Red cards	3	1	0
Pass completion %	72	89	80

The manager is impressed with Chris' recommendations and asks him to do a detailed analysis of two of his current strikers' performances over several years because he is thinking of selling one of them. Do a statistical analysis of both players and produce a presentation.

Wayne

Year	Age	Apps	Goals	Assists
2006/7	21	35	14	20
2007/8	22	27	12	13
2008/9	23	30	12	9
2009/10	24	32	26	11
2010/11	25	16	4	10

Didier

Didier				
Year	Age	Apps	Goals	Assists
2006/7	28	36	20	3
2007/8	29	19	8	8
2008/9	30	24	5	5
2009/10	31	32	29	12
2010/11	32	24	10	10

Did you know that SPORT was so dependent upon STATISTICS?

How are Statistics used by ...

... Intelligence agencies?

The job

There is a constant stream of information or 'intelligence' to be considered where economic and national security are concerned. Those professionals who are charged with finding, understanding, interpreting and assessing secret information are called Intelligence Analysts. They handle the biggest threats to the UK and provide important support to the armed forces.

You could be:

- An intelligence officer
- An intelligence analyst
- An operational officer
- A language specialist
- A security consultant

The maths

Intelligence information does not always reach an analyst's desk in an organised and straight-forward way They must clearly assemble all the facts so they can analyse it efficiently and precisely. Analysts constantly use probability, approximations, sampling, etc. to take what little they know and determine the likely implications.

The profile

Armin is an intelligence officer. His specialty is signals intelligence, where he helps decode and understand messages intercepted from all over the world. With an MA in Modern Languages, Armin never thought he was much of a maths person. However, his fluency in several languages is a vital resource for his work. Since joining the intelligence world, Armin has travelled all over the globe and been involved in projects directly responsible for counteracting terrorism and organised crime within the UK and abroad.

GIVE IT A TRY!

- 1 a Armin is investigating complaints that a new satellite phone is not working in temperatures of above 50 °C. He knows that there are 20 areas where the phones are being used with approximately 200 phones in each location. Describe how he could determine a sample of phones to test whether or not the complaints are valid.
 - **b** If Armin finds that 5% of phones fail in these conditions, find the probability that if ten phones are used to make calls, no more than three of them fail.

Did you know that SECURITY was so dependent upon STATISTICS?

Mapping chart

GCSE Statistics AQA Practice book	Page	GCSE Statistics AQA Student Book	Page
Chapter 1 — Planning a strategy		Chapter 1 — Planning a strategy	
1.1 The data handling cycle	5	1.1 The data handling cycle	8
1.2 Planning an investigation	6	1.2 Planning an investigation	10
Chapter 2 — Collection of data		Chapter 2 – Collection of data	
2.1 Types of data	8	2.1 Types of data	16
2.2 Obtaining data	12	2.3 Data sources	26
Chapter 3 — Sampling		Chapter 3 — Sampling	
3.1 Sampling	14	3.1 Sampling	40
Chapter 4 – Conducting a survey or experiment		Chapter 4 — Conducting a survey or experiment	
4.1 Surveys, questionnaires and interviews	18	4.1 Surveys	60
4.2 Census data	21	4.2 Questionnaires	64
Chapter 5 – Tabulation		Chapter 5 – Tabulation	
5.1 Tally charts and frequency tables	23	5.1 Tally charts and frequency tables	80
5.2 Grouped frequency tables	26	5.2 Grouped frequency tables	83
5.3 Two-way tables	30	5.3 Two-way tables	87
Chapter 6 – Diagrammatic representation		Chapter 6 – Diagrammatic representation	
6.1 Pictograms, line graphs and bar charts	33	6.1 Pictograms, line graphs and bar charts	98
6.2 Pie charts	36	6.2 Pie charts	115
6.3 Misleading graphs	38	6.3 Misleading graphs	122
6.4 Choropleth maps	40	6.4 Choropleth maps	128
6.5 Stem-and-leaf diagrams	44	6.5 Stem-and-leaf diagrams	135
6.6 Histograms and frequency polygons	46	6.6 Histograms and frequency polygons	140
6.7 Cumulative frequency graphs	50	6.7 Cumulative frequency graphs	150
Chapter 7 – Measures of location		Chapter 7 – Measures of location	
7.1 The mode	54	7.1 The mode	174
7.2 The median	56	7.2 The median	176

GCSE Statistics AQA Practice book	Page	GCSE Statistics AQA Student Book	Page
7.3 The mean	59	7.3 The mean	181
7.4 Which average to use	62	7.4 Which average to use	185
7.5 Grouped data	65	7.5 Grouped data	190
7.6 The geometric mean	69	7.6 The geometric mean	194
Chapter 8 – Measures of spread		Chapter 8 – Measures of spread	
8.1 Box-and-whisker plots	71	8.1 Box-and-whisker plots	204
8.2 Variance and standard deviation	74	8.2 Variance and standard deviation	210
8.3 Properties of frequency distribution	78	8.4 Properties of frequency distribution	217
Chapter 9 – Statistics used in everyday life		Chapter 9 — Statistics used in everyday life	
9.1 Statistics used in everyday life	83	9.1 Statistics used in everyday life	234
Chapter 10 — Times series and quality assurance		Chapter 10 — Times series and quality assurance	
10.1 Times series and moving averages	86	10.1 Moving averages	250
		10.2 Time series	258
10.2 Quality assurance	91	10.3 Quality assurance	268
Chapter 11 – Correlation and regression		Chapter 11 — Correlation and regression	
11.1 Scatter diagrams and correlation	94	11.1 Scatter diagrams and correlation	290
11.2 Spearman's rank and product moment correlation coefficients	96	11.1 Spearman's rank and product moment correlation coefficients	299
Chapter 12 – Probability		Chapter 12 – Probability	
12.1 Probability scale	100	12.1 Probability scale	316
12.2 Equally likely outcomes	102	12.2 Equally likely outcomes	318
12.3 The addition rule for events	104	12.3 The addition rule for events	323
12.4 Experimental probability	106	12.4 Experimental probability	328
12.5 Combined events	109	12.5 Combined events	334
12.6 Expectation	111	12.6 Expectation	338
12.7 Tree diagrams	113	12.8 Tree diagrams	348
12.8 Conditional probability	117	12.9 Conditional probability	355