

B4 IT'S A GREEN WORLD

B4 answers

Page 88 Plants need minerals too

- **1 a i** Help plant growth
 - ii Potassium; magnesium
 - **b** i 3%
 - **ii** 0.6 kg

2 a

mineral	mineral why the mineral is needed	
phosphate	respiration or growth	
potassium	respiration or photosynthesis	
magnesium	photosynthesis	

- **b i** Poor root growth; discoloured leaves
 - ii Poor flower or fruit growth; discoloured leaves
 - iii Yellow leaves

Page 89 Energy flow

- 1 a i Oak leaves
 - ii Makes own food
 - b i Caterpillar/shrew/foxii Eat food
 - c Sun
- 2 a Numbers of organisms; at each stage of food chain

- c Heat from respiration; egestion of waste; movement
- 3 a Photosynthesis
 - **b** Alcohol
- 4 Yeast is used to ferment the sugar; to produce alcohol; alcohol is mixed with petrol

(Any 2 = 1 mark each)

(Any 1)

B4 answers

b i Detritivoresii Breaks up remains; increasing surface area

2 a i Freeze; make jam; dry

 Freezing: kills or slows growth of bacteria; jam: kills bacteria or fungi by removing water; dry: bacteria and fungi need water to grow (Any 2 = 1 mark each)

(Any 2 = 1 mark each)

Page 92 Recycling

1 Decay nitrogen recycled

- 2 a i: burning ii: respiration iii: photosynthesis
 - **b** Photosynthesis
 - c Carry out respiration; when they break down the dead plant and animal material
- **3 a** To make proteins for growth
 - **b** Break down dead plants and animals; turning nitrogen compounds into nitrates
 - **c** Unreactive

b $40 + 2(16 + 1) = 40 + (2 \times 17) = 74$

c i The reaction has given off a gasii Oxygen from the air has probably reacted with the chemical

d In filtration: small amounts stay on the filter paper; in evaporation: some chemicals spit out into the room; in transferring liquids: tiny amounts of liquid stick to the sides of the beaker because more than one reaction might be taking place so the reactants are being used up in a different reaction

(Any 2)

```
2 a i 28

ii 42

iii

Actual yield x 100

Percentage yield

iv

\frac{28 \times 100}{42} = 66\%
```

4

C4 CHEMICAL ECONOMICS

C4 answers

Page 96 Fertilisers and crop yield

- **1 a** Minerals through its roots
 - **b** Nitrogen (N); phosphorus (P); potassium (K)
 - c Fertilisers
 - **d** To increase their crop yields
 - e They are dissolved in water so they can be absorbed by plants through their roots
 - **f** $(NH_4)_2SO_4$ Mr = 2(14 + 4) + 32 + (16 x 4) = 132
- **2** a C D B A
 - **b** A: acid is added from a burette to an alkali; B: the crystals are filtered off;C: alkali is measured and put into a flask; D: water is evaporated off to leave crystals
 - c Water
 - **d i** Phosphoric acid
 - ii Ammonium hydroxide
 - iii Phosphoric acid + ammonium hydroxide ammonium phosphate + water

Page 97 The Haber process

- 1 a Ammonia
 - **b** The air
 - c Reversible reaction
- **2** a Nitrogen is obtained from the air; hydrogen comes from natural gas; the gases are passed over an iron catalyst under high pressure; an optimum temperature of 450 °C is chosen; there is a recycling system for unreacted nitrogen and hydrogen
- **3 a** The cost of building the plant; people's wages; the cost of the raw materials; nitrogen and hydrogen and the energy costs; how quickly the new substance can be made (cost of a catalyst) (Any 3)
- b

factor	explanation
cost of building the plant	The bigger the plant the longer it takes to repay so putting up cost of fertiliser
people's wages	Constant cost added to cost of fertiliser
cost of the raw materials	Constant cost added to cost of fertiliser
energy costs	The higher the pressure used the more energy needed as a cost added to cost of fertilser
how quickly the new substance can be made	The quicker it can be made the less the cost of energy and people's wages needed

(Any 3)

- c 400 atmospheres
- d Increases
- e Decreases

C4 answers

Page 98 Detergents

- **b** Organic acid + alkali ------ detergent (salt) + water
- c It dissolves grease stains; it dissolves in water at the same time
- **d i** It is better to wash clothes at 40 °C instead of at high temperatures because washing machines have to heat up a lot of water; this needs energy; so the lower the temperature of the water the less energy is used and less greenhouse gases are released into the atmosphere
 - **ii** As many dyes are easily damaged by high temperatures; it also means that many more fabrics can be machine washed as their structure would be damaged at higher temperatures
- 2 a Solvents; solute; solution; soluble; insoluble
- 3 a Dry-cleaned
 - **b** It does not mean that no liquids are used, just that the liquid solvent is not water

Page 99 Batch or continuous?

- **1 a i** Speciality chemicals, such as medicines and pharmaceutical drugs, are often made on demand in a batch process
 - ii Bulk chemicals such as ammonia
 - Need to be made for a smaller demand; sterile conditions required so need to re-clean, need to change type of drug produced
 (Any 1)
 - **c** If a chemical is needed in large amounts it is usually made by a continuous process which can be more highly automated
- **2 a** Extracted from plants
 - Chemicals are held in the plant cells; plant cells have tough walls, so to extract the compound the plant is crushed to break the cell walls; then the chemical must be dissolved. This only works if a suitable solvent is used; the solvent dissolves lots of different compounds, so the desired compound is then separated from the others; this can be done by chromatography
- 3 a Research and testing; labour costs; energy costs; raw materials; development time

(Any 3)

6

C4 answers

Page 100 Nanochemistry

	diamond	graphite	buckminster fullerene
appearance	lustrous and colourless	black solid	black and opaque
solubility	insoluble in water	insoluble in water	deep red solution in petrol
electrical conductivity	does not conduct electricity	conducts electricity	conducts electricity
uses	cutting tools/ jewellery	electrodes/pencil lead/lubricant	semiconductors in electrical circuits
reasons for use	very hard/lustrous and colourless	conduct electricity/ high melting point/ slipppery and black/ slippery	can join together to make nanotubes

1 a

- Very strong; conduct electricity b
- Semiconductors in electrical circuits; industrial catalysts; reinforcement of graphite C in tennis rackets

C4 answers

Page 101 How pure is our water?

- **1 a** Lakes; rivers; aquifers; reservoirs.
 - **b** A cheap raw material; a coolant; a valuable solvent
 - c Dissolved salts and minerals; pollutants; insoluble materials; microbes (killed by chlorination)
 - d Nitrate residues; lead compounds; pesticide residues
 - e Clean water saves more lives than medicines
- **2** Sedimentation \rightarrow filtration \rightarrow chlorination

Sedimentation: larger bits drop to the bottom; filtration: sand is used to filter out finer particles; chlorination: kills microbes

3 a	chlorides	white precipitate	
	iodides	yellow precipitate	

- **b** Add two drops of barium chloride solution
- c Lead nitrate + potassium chloride → lead chloride + potassium nitrate

P4 answers Remember:

er:) Check which grade you are working at.

Page 103 Sparks!

1 a Negative

- b i Acetate/perspexii It will pick up the pieces of paper
- c Copper is an electrical conductor so charges will not stay on it
- 2 a So that charge cannot pass through her
 - **b** So that she does not get an electric shock
 - c i Sally becomes charged
 - ii All her hairs gain the same charge; like charges repel so the hairs move away from each other
- **3 a** The car becomes charged due to friction with the air on the journey; you are not charged so charge flows through you when you touch the car door
 - **b** Lightning may strike the tree as it is the tallest object around
 - **c** Cling film becomes charged due to friction as it is unrolled (as electrons are transferred from one part of the film to another, areas acquire opposite charges, so attract)
 - **d** Nylon is an electrical insulator; Priya becomes charged by friction as she walks
 - **e** Bare wire is highly charged; when Tom touches it charge flows through him to Earth (giving a serious electric shock)

Page 104 Uses of electrostatics

- **1 a** To re-start a heart
 - **b** Makes the heart contract
 - c Place paddles firmly on chest; no clothes/hairs
 - **d** It only passes for a very short time
- **2 a** Even coverage; less paint wasted; paint covers awkward places (Any 1)
 - **b** Paint droplets all have the same charge; like charges repel
 - c To attract the paint droplets to the frames; as opposite charges attract
- **3 a** To remove harmful particles that pollute the atmosphere
 - **b** Fossil fuel power stations
 - c Positive

P4 answers

Page 105 Safe electricals

- **1 a i** Circuit incomplete
 - ii (Complete circuit = 1 mark)
 - b i Varying brightnessii Ammeter in series; voltmeter in parallel with lampiii 24 ohms
- 2 a Live; neutral; earthed; power station
 - **b** Battery is dc, mains is ac; battery is lower voltage than mains
- **3 a** (Live: on right (to fuse); neutral: on left; earth: at top)
 - **c i** (See diagram)
 - ii Breaks circuit if a fault occurs

d i Earth

ii It is connected to the metal case of an appliance to prevent it becoming charged if touched by a live wire; it provides a low resistance path to the ground

e 13 A

Page 106 Ultrasound

- **1 a** Vibrations are in same direction as the wave
 - **b** The number of vibrations in a second
 - **c i** Vibrations set up pressure wave in air compressions (higher pressure) and rarefactions (lower pressure); make eardrum vibrate
 - **ii** Frequency increases
 - iii Sound of a higher frequency than humans can hear
- 2 a To check the condition of the foetus
 - **b** 1 000 000 Hz (or 1 MHz)
 - **c** Measure speed of blood flow; clean teeth/old buildings/jeweller; break down stones in the body

(Any 2)

- d Pulse; tissues; reflected; echoes; image; gel; probe; skin; ultrasound/pulse; reflected; skin
- **e i** Very rapid ultrasound vibrations break the stones down into small pieces that are excreted from the body in the normal way
 - ii It needs to be powerful enough/carry enough energy; to break up the stones

P4 answers

Page 107 Treatment

- 1 a Diagnosis: finding out what is wrong with a patient; therapy: treatment
 - **b** Similarity: both electromagnetic radiation (of very short wavelength); difference: gamma rays emitted from the nucleus of an atom, X-rays are not (produced in an X-ray machine)
 - c Both very penetrating/can pass into the body to treat internal organs
 - **d** Alpha particles cannot penetrate skin; beta particles would be stopped by a small thickness of tissue and by bone
- **2 a** It damages and destroys cancerous cells
 - **b** Destroying cancerous cells by exposing the affected area of the body to large doses of radiation
 - **c** To make sure all the cancerous cells are removed (by surgery) or destroyed (by radiotherapy)
 - **d** To sterilise equipment
- **3 a** A tiny amount of a radioisotope introduced into the body
 - **b** To investigate a problem without surgery
 - c Occasionally beta but usually gamma radiation
 - **b** Thyroid
 - **e** X-rays are produced in an X-ray tube; gamma rays can be emitted inside the body and their progress monitored

Page 108 What is radioactivity?

- 1 a Average number of nuclei that decay every second rate of decay
 - **b i** Geiger-Muller tube **ii** Ratemeter
 - c The decay of one nucleus
 - **d** Activity = $\frac{\text{number of nuclei that decay}}{\frac{1}{2}}$

time taken in s = $\frac{750}{30}$

- = 25 Bq
- e Decrease
- **f** Radioactive decay is a random process; all experimental results should be repeated if possible

2 a

type of radiation	charge (+, – or 0)	what it is	particle or wave
alpha	+	helium nucleus	particle
beta	-	electron	particle
gamma	0	electromagnetic radiation	wave

b Gamma; alpha; alpha; gamma; beta

P4 answers

Page 109 Uses of radioisotopes

- **1 a** lonising radiation that is always present in the environment
 - **b** Radioactive substances present in rocks (especially granite) and soil; cosmic rays from space
- **2** Detect leaks in underground pipes; monitor the uptake of fertilisers in plants; check for a blockage in a patient's blood vessel; track the dispersal of waste material; track the route of underground pipes

(Any 3)

- **3 a** It is highly ionising/short range in air
 - **b** Alpha particles ionise atoms in the air; + and ions move towards and + plates respectively; this creates a tiny current which is detected; if present smoke particles attach themselves to the ions neutralising them; current falls setting off alarm
- **4 a** Very little change in count rate over 200 year period
 - **b** Seeds; animal bone
 - c Rocks never contained living matter

