Collins

۲

Foundation Support Workbook AQA GCSE Combined Science Biology topics

Liz Ouldridge

Contents

۲

Section 1 • Cell Biology

Looking at cells with a microscope Size of cells and cell parts Cell division by mitosis Cell specialisation and differentiation Stem cells

Section 2 • Transport in cells

Diffusion in and out of cells Exchange surfaces in animals Osmosis Active transport

Section 3 • Animal tissues, organs and organ systems

Digestive system Digestive enzymes Factors affecting enzymes The heart and blood vessels Heart-lungs system Heart problems Risk factors for non-infectious diseases Cancer

Section 4 • Plant tissues, organs and organ systems

Looking at leaves Water movement in plants Minerals and sugar movement in plants

Section 5 • Infectious diseases

Microorganisms and disease Spread of disease Malaria Plant diseases Human defence systems Vaccination Bacteria and antibiotics Making and testing new drugs

Section 6 • Photosynthesis and respiration reactions

Photosynthesis for food Photosynthesis equation

Factors affecting photosynthesis	000
Cell respiration	000
Anaerobic respiration	000
Effect of exercise	000

Section 7 • Homeostasis and response

Homeostasis	000
The nervous system and reflexes	000
Hormones	000
Controlling blood glucose	000
Hormones and puberty	000
Hormones and the menstrual cycle	000
Contraception	000

Section 8 • Inheritance, variation and evolution

Evolution000Fossil evidence for evolution000Antibiotic resistance in bacteria000Selective breeding000Genetic engineering000Classification of living organisms000Extinction000	000 000 000 000 000 000 000 000	Sexual reproduction and fertilisation Asexual reproduction Cell division by meiosis Chromosomes and genes Genetic variation Gene disorders Sex chromosomes How features are passed on	000 000 000 000 000 000 000 000
000 000 000Selective breeding Genetic engineering Classification of living organisms000 000			
000 000 000Genetic engineering000 000000 Classification of living organisms000		Antibiotic resistance in bacteria	000
	000	Genetic engineering Classification of living organisms	000

Section 9 • Ecology

000		
000	Habitats and ecosystems	000
000	Food in an ecosystem	000
000	Non-living tactors that attect communities	000
000	Factors attecting population size	000
000	Adapting for survival	000
000	Cycling materials	000
000	Pollution	000
000	Land use and deforestation	000
	Global warming	000
	Maintaining biodiversity	000

000

000

000

000

000

000 000

000

000

Answers

Æ

۲

1.51	oction		h		
	ection	CCII		UG)	J

Looking at cells with a microscope

- Cells can be studied using light microscopes and electron microscopes.
- An electron microscope can magnify more than a light microscope. (They can make cells look much bigger.)

.....

- An electron microscope also has a higher resolving power. (They show more detail.)
- Cells contain small structures that do different jobs.
- Bacterial cells are much smaller and simpler than plant and animal cells.

Where in the cell do most c	hemical reactions take place?		1. A student looks at a plant cell using a light m
Tick one box.			The size of the image is 20 mm across. The actual size o
			Calculate the magnification of the image.
Cell membrane			Use the equation: Magnification = $\frac{\text{image size}}{\text{actual size}}$
Cytoplasm			Show Magnification _ 20 mm
Nucleus		[1 mark]	
2. Draw one line from each ce	Il structure to the correct information about the structure.		Magnificati
Cell structure	Job		2. A student looks at their own hair using a light
Nucleus	Where respiration takes place		The size of the image is 0.75 cm. The actual hair has a w
Cell membrane	Controls the activities of the cell and contains DNA		Calculate the magnification of the image.
Centhembrane			Use the equation: Magnification = $\frac{\text{image size}}{\text{actual size}}$
Mitochondria	Where proteins are produced		Show $1 \text{ cm} = 10 \text{ mm} \text{ so } 0.75 \text{ cm} = 7.5 \text{ mm}$
Ribosomes	Controls the transport of substances into and out of the cell	[4 marks]	
Name two coll structures fr	om the list in question 1 that are not found in bacterial cells.		Magnification = $$
3. Name two cell structures fr	on the list in question i that are not found in bacterial cells.		
1	2		Magnificati
4. Complete the sentence. Use	e a word from the box.		3. An image of a cell is 3 mm across. The magnif
Some parts of a cell can such as	can only be seen with an electron microscope.		was ×100.
			a How big is the actual cell?
Cell membrane Nucleus	Ribosomes	[1 mark]	Use the equation: Magnification = $\frac{\text{image size}}{\text{actual size}}$
			Show Me Actual size = <u>imagesize</u>
5. Complete the sentence. Use			1016
	detail than a light microscope. This is because the electron micros	scope has a	Actual size =
higher			
Resolving power Magnificati	on	[1 mark]	Actual size =

4

۲

Sizes of cells and cell parts

Magnification = size of image/size of real object
You can calculate the actual object size if you know the size of an image and the magnification.
The size of cells and cell parts is in micrometres (μm) or nanometres (nm).
In standard form, 1/1000 is 1 × 10⁻³, 1/1000 000 is 1 × 10⁻⁶ and 1/1000 000 000 is 1 × 10⁻⁹

t microscope.

e of cell is 0.02 mm.

cation = ___

ight microscope.

a width of 0.1 mm.

Support Don't forget the \times sign.

[2 marks]

A

Support

To use the equation you need to convert the measurements to the same units.

Support

Check your answer is sensible. If the magnification is less than 1 you have made a mistake! Magnification is always >1.

cation = _____

gnification of the microscope

[2 marks]

Support

You need to rearrange the equation for this calculation to find the actual size.

This equation is of the form $a = \frac{b}{c}$. To find c first multiply both sides by c then divide both sides by a.

ze = _____ mm

[4 marks]

Cell division by mitosis How big is the cell in micrometres (µm)? b 1 mm = 1000 µm New cells are needed as an organism grows or to re • A cell grows in size, the DNA duplicates, then the ce repeats. This is called the cell cycle. Actual size of cell = _____ × 1000 • The process of how a cell divides in two is called mitosis. • The nucleus of a cell contains chromosomes. Actual size = _____ _____ micrometres [1 mark] • Chromosomes are made from DNA and carry the genes. A scientist looks at red blood cells with a microscope. In the image the size of one red blood cell is 4 mm. When a cell divides by mitosis, two new cells are formed. What can you say about the genes in the new cells? The magnification is \times 500. Tick **one** box. How big is the actual cell? The two cells are genetically different. The two cells are genetically identical. [1 mark] The nucleus of every cell contains chromosomes. Complete the following sentences. Chromosomes are made from a substance called _____ . Each chromosome Actual size = _____ mm [3 marks] contains many sets of instructions called _____ _. These control the activities A bacterium is 4 µm in length. of the [3 marks] 5. Change the length into millimetres (mm). Give your answer in decimal form. Human body cells have 46 chromosomes. 3. Shov Me $1 \ \mu m = \frac{1}{1000} \ mm$ Complete the following sentences. so 4 μ m = $\frac{4}{1000}$ mm Before a cell can divide the chromosomes must be duplicated. Therefore, during cell Me division the number of chromosomes is ____ Length = mm [1 mark] After cell division there are ______ chromosomes in each cell. [3 marks] A ribosome is 20 nm across. Explain why mitosis must occur in a developing human embryo. Support Change the length into micrometres (µm). Give your answer in Support Look for clues in the question. standard form. You need to **explain why**, Nanometres are **smaller** than which means you have to link millimetres. To convert from [2 marks] what happens to the reason. a smaller unit to a larger unit, Use words that link one part of divide. So to convert from 20 Length = _____ micrometres [1 mark] each sentence to the next part, nm to µm you divide 20 by such as 'because'. 1000. Now change the length into millimetres (mm). Give your answer in standard form. Length = _____ mm [1 mark]

۲

۲

26/02/16	7-23 PM	

7

epair damaged tissu	Jes.		
ell divides into two.	Each cell grow	ws in size, and	the cycle

