Guidance on	Guidance on the use of codes for this mark scheme						
М	Method mark						
А	Accuracy mark						
В	Working mark						
С	Communication mark						
Р	Proof, process or justification mark						
cao	Correct answer only						
oe	Or equivalent						
ft	Follow through						

Question	Working	Answer	Mark	AO	Notes	Grade	
1 a	1: $6 \neq 6$: 1 because 1: $6 = 6$: 36 (×6) Or 6:1 = 1: $\frac{1}{6}$ (÷6)	No	P1	2	P1 for demonstrating an understanding of each ratio in its unitary form as a method of comparison, oe	В	
ь	19:95 = 1 × 19:5 × 19 = 1:5	19:95 (÷19) 1: 5	B1		B1 for calculation showing cancelling		
с		No, because the units must be the same in order to compare	C1		C1 for an understanding of scale and equivalence of units		
d	B: G 2 : 5 4 : 10 6 : 15 (21 students) 7 : 17.5 (not possible) 8 : 20 (28 students)	No, to retain this ratio requires 2 boys and 5 girls each time, so 7 students. This means that there can only be multiples of 7 students in the club. 24 is not a multiple of 7.	C1		C1 for reference to multiples of 7		
2 a	Packs of 3: $90 \div 3 = 30$ $30 \text{ packs cost } 30 \times \text{\pounds}1.50 = \text{\pounds}45$ Packs of 15: $90 \div 15 = 6$ $6 \text{ packs cost } 6 \times \text{\pounds}5 = \text{\pounds}30$ Packs of 25: Not possible, because 90 is not divisible by 25.	6 packs of 15. 6 packs of 15 for £30.	B1 A1	2	B1 for correct combination to 90 A1 for correct cost	В	
Ь	Buy 2 get one free on packs of 15. Buy two packs of 15 for £10 Get a pack of 15 free. 45 will cost £20. So new cost = £20 Or $(3 \times 15) + (3 \times 15) = 90$ £10 + £10 = £20	No, still buy 6 packs of 15 but now for the lower price of £20.	B1 C1		B1 for a method for calculating $\frac{2}{3}$ of the cost C1 for correct justification of choice		

3 a b	Appropriate workings related to their question.	For example: Easy: a shop increased its prices by 10%. If an item costs £100, how much more does it costs after the price increase? £10 Easy to find because original amount is £100. Difficult: A worker's hourly rate increased by 25%. If the hourly rate was £8 before the increase, how much does the worker get paid per hour after the increase? £10 Difficult to find because the percentage is not a multiple of 10 and context is more complex.	C1 C1 C1 C1 C1	2 3	C1 for clarity of question C1 for explanation that links complexity of mathematics to context of question C1 for clarity of question C1 for explanation that links complexity of mathematics to context of question	В
4		The formula for density is: density = mass ÷ volume If the objects have the same volume but different masses, this formula indicates that the densities will be different and so suggests the objects are made from different metals.	C1 1	3	C1 for insight into the effect of changing a variable in a formula	Μ

5 a	1 g/cm ³ = 1000 kg/m ³ So	= 13 m ³ to nearest m ³	P1	2 3	P1 for conversion from g/cm ³ to kg/m ³	М
	2.3 g/cm ³ = 2300 kg/m ³ Use the formula:					
	density = $\frac{\text{mass}}{\text{volume}}$					
	Rearrange the formula: volume = mass ÷ density 1 tonne = 1000 kg					
	so volume = $\frac{30\ 000}{2300}$ kg		B1		B1 for correct rearrangement of formula	
	$2.7 \text{ g/cm}^3 = 2700 \text{ kg/m}^3$ They both have the same volume.					
	Again, use the formula: mass = density \times volume		A1		A1 oe	
b	$13 \times 2700 = 35\ 100$ The granite has a mass of 35.1 tonnes and the sandstone has a mass of 30 tonnes OR		B1		B1 for calculating correct tonnage for granite	
	$\frac{35\ 100}{30\ 000} = 1.17$	5.1 tonnes heavier or 17% heavier.	M1 C1		M1 for correct method for comparison of mass C1 for stating correct comparison	
			6			

6	$p_0 = 630 \text{ kg/m}^3$			3		М
	$p_m = 550 \text{ kg/m}^3$					
	$m_0 = 315 \text{ g}$					
	= 0.315 kg					
	Start with the formula: $p = \frac{m}{v}$					
	Rearrange to: $v = \frac{m}{p}$					
	The carvings are identical so the volume is					
	the same.					
	$\frac{0.315}{2222} = \frac{m_m}{552}$		M1		M1 for dividing mass by volume and making correct	
	630 550 Rearranging:				comparison	
			B1		B1 for rearranging	
	$m_m = 550 \times \frac{0.315}{630}$					
	= 0.275 kg		A1		A1 oe	
			3			
7 a	The ratio men : women is 5 : 2.			3		М
	There are 24 women so the total			-		
	membership is:					
	$5 \times 12 : 2 \times 12$ The ratio becomes 60 : 24		M1		M1 for multiplying by 12 oe	
	Then the total membership =					
	60 + 24 = 84	84	A1		A1 for 84 members in total	
b	The ratio R : S : J is 2 : 3 : 5. There are 10 shares.					
	$£85 \div 10 = £8.50$		M1		M1 for division of 85 by 10	
	Shaun pays $3 \times \pounds 8.50 = \pounds 25.50$	£25.50	A1		A1 for correct multiplication $3 \times \pounds 8.50$ oe	
С		Own question like the one in part a. For example: In a tennis club, 30 members	C1		C1 for correct type of question	
		are men. The ratio of women to men is				
		6 : 5. How many of the members are				
		female? 36	5			

	1	1	1			
8 a	$b_2 = \frac{5}{4} \times b_1$		P1	3	P1 for process of setting up equation	М
	$b_2 = \frac{5}{4} \times 8$					
	$=\frac{40}{4}=10$ hours	10 hours	A1		A1 cao	
b	<i>b</i> ₂ costs £198 <i>b</i> ₁ costs £118					
	$\frac{198}{118}$ = 1.68 to 2dp					
	$\frac{5}{4} = 1.25$	The increase in cost is proportionally more than the increase in battery life.	B1 C1		B1 for division of higher cost by lower cost C1 for use of comparison to justify the answer	
с	$\frac{b_2}{118} = \frac{5}{4}$					
	$b_2 = \frac{5 \times 118}{4}$					
	$=\frac{590}{4}=$ £147.50		M1		M1 for multiplying lower cost by 5 and dividing by 4	
	Reduction is: £198 – £147.50 = £50.50	She would need a reduction of £50.50.				
		She would need a reduction of £50.50.	A1 6		A1 cao	
9 a	For the first 5-pack: $5 \times 90 \text{ minutes} = 450 \text{ minutes}$ £6.60 = 660p	The best buy is the 10-pack of 80 minutes each @ £6.50.	P1	3	P1 for process of multiplying up for total minutes and then division to identify either cost per minute or time per \pounds	М
	$650p \div 450 = 1.44p$ per minute For the 10-pack: $10 \times 80 = 800$ minutes for £6.50 ÷ 800 = 0.8125p per minute cheapest		B2		B2 for correct workings in each of the three cases	
	For the second 5-pack: $5 \times 80 = 400$ minutes $\pounds 4.00 = 400p$					
	$400p \div 400 = 1p \text{ per minute}$ Or $450 \div 6.50 = 69 \text{ minutes per } \pounds 1$					
	$800 \div 6.50 = 123$ minutes per £1 best value					

b	400 ÷ 4.00 = 100 minutes per £1	There are more CDs than are needed. A recording time of 80 minutes is not long enough. £6.50 is too expensive at time of purchase (prefer just to spend £4).	C1		C1 for explanation of possible reasons not to choose the best buy	
10	£800 × 1.19 gives €952 £800 × 1.22 gives €976 €976 - €952 = €24	They will get €24 more.	M1 B1 A1 3	2	M1 for multiplications B1 for subtraction ft A1 cao	М
11 a i	By expressing this as: 'How many in' How many in Answer 2		C2	2	C1 for correct justification C1 for showing diagram oe	М
ii	How many in Answer 3		C1		C1 for correct justification showing diagram oe	
iii	How many in Answer one and a half		C1		1 for correct justification showing diagram oe	
b	Use chosen method from part a to explain correctly how to divide, using fractions.		C1 P1 6		C1 for correct explanation P1 for process showing that dividing by $\frac{1}{2}$ doubles the number of pieces, so is the same as multiplying by 2	

12 a	8 kg = 8000 g 8000 ÷ 250 = 32		P1	2 3	P1 for process of division to see how many batches of 15 biscuits can be made with each ingredient	М
	3 kg = 3000 g		B1	3	B1 for 32, 35, 100 and 28	
	$3000 \div 85 = 35$ (to nearest whole number)					
	2 kg = 2000 g					
	2000 ÷ 20 = 100 7 kg = 7000 g					
	7000 ÷ 250 = 28					
	So the limiting value is the amount of icing					
	sugar. Therefore she can make $24 \times 28 = 672$ biscuits.	She can make 44 complete packs of 15	P1		P1 for correct identification of limiting value	
	$672 \div 15 = 44.8$	biscuits.	FI			
b	$44 \times \frac{3}{4} = 33$		B1		B1 for correct cost of $\frac{3}{4}$ of biscuits	
	$33 \times \pounds 2.99 = \pounds 98.67$ 44 - 33 = 11 discounted					
	$\pounds 2.99 \times 0.85 = \pounds 2.54$ to 2 dp		M1		M1 for use of 0.85 multiplier	
	11 × 2.54 = £27.94		A1		A1 for cao	
	Total sales					
	= £98.67 + £27.94 = £126.61					
	Total costs					
	$= \pounds 59 + \pounds 26 = \pounds 85$					
	To calculate percentage profit:					
	$\text{profit} = \frac{(\pounds 126.81 - \pounds 85)}{(\pounds 126.81 - \pounds 85)}$				M1 for division of total sales by total cost (ft)	
	£85		M1 A1		A1 for correct percentage with rounding	
	= 0.489 529 412					
	and percentage profit = 0.489 529 412 × 100% = 48.95%	49% profit to the nearest integer.				
			8			
13	Price including VAT = $\pounds 595 \times 1.20 = \pounds 714$		P1	2	P1 for process of multiplying by 1.2 to find cost with	М
	With a 20% discount: £714 × 0.8 = £571.20 £571.20 – £595 = £23.80		M1		VAT M1 for multiplying by 0.8 to find 20% reduced price (ft)	
	OR £595 × 0.8 = £476	He is overpaying by £23.80	B1		B1 for subtracting to find overpayment	
	$\pounds 476 \times 1.2 = \pounds 571.20$	Disagree. He would pay the shop more	C1		C1 for demonstrating overpayment with explanation	
		than he needs to.	4			1

14 a		With a reduction of 15%, the sale price	M1	2	M1 for correct formula	М
		(<i>B</i>) is $A \times 0.85$.				
b		$A = \frac{B}{0.85}$	P1		P1 for correct rearrangement of ÷ by 0.85	
C		Yes, the new value will always be the original value multiplied by a percentage, calculated from the percentage change. For a reduction, the multiplier is (100 – the percentage reduction)%, for an increase it is (100 + the percentage increase)%.	C1		C1 for clear explanation	
d		Percentage change problem, for example: The cost of a new car was £ <i>A</i> . In the new financial year, it increased by 5% to £ <i>B</i> . Write a formula to describe the proportional change. $B = A \times 1.05$ and $A = \frac{B}{1.05}$.	C1		C1 for clarity of communication of question	
15 a	$A \times 1.5 \times 1.5 = A \times 1.5^{2}$ = $A \times 2.25$	No, an increase to <i>A</i> of 50% followed by another increase of 50% gives 2.25 <i>A</i> . Doubling would give 2 <i>A</i> and $2A \neq 2.25A$.	C1	2	C1 for clear explanation with calculated justification oe	М
Ь	80% discount gives a price of $A \times 0.20$. 60% followed by 20% gives a price of $A \times 0.4 \times 0.8 = A \times 0.32$.	An 80% discount off the price of A gives a new price of 0.2 A . A 60% discount off the price of A , followed by a further 20% discount, gives a new price of 0.32 A so the 80% discount is better value.	P1		P1 for clear explanation with calculated justification oe	
C	$A \times 0.75 \times 1.20 = 0.9A$ $A \times 1.20 \times 0.75 = 0.9A$	If the original cost is <i>A</i> , the cost after a discount of 25% is 0.75 <i>A</i> and paying VAT at 20% gives a new price of 0.9 <i>A</i> . If VAT is added first, the price is 1.2 <i>A</i> . A 25% reduction gives a new price of 0.9 <i>A</i> . Because multiplication is commutative, the final prices are the same. It makes no difference.	C1 3		C1 for clear explanation with calculated justification oe	

16 a	$A \times \frac{6}{7} = \pounds 996$	£1162	M1 A1	2 3	M1 for multiplication A1 cao	М
Ь	$A = \pounds 996 \times \frac{7}{6} = \pounds 1162$ $A \times 1.04 = \pounds 6.50$ $A = \frac{\pounds 6.50}{1.04} = \pounds 6.25$	£6.25	M1 A1		M1 for multiplication by 1.04 and rearrangement A1 cao	
с	$A \times 1.07 = \pounds957.65$ $A = \pounds \frac{957.65}{1.07} = \pounds895$	£895	M1 A1		M1 for multiplication by 1.07 and rearrangement A1 cao	
d	If the original amount is <i>A</i> , the multiplier is <i>b</i> for a percentage increase or decrease, and the new value is <i>C</i> : $A \times b = C$	$A = C \times \frac{1}{b}$	C1		C1 for correct explanation either in words or by a general formula, provided the variables are defined	
е		If the multiplier is x : x > 1 means an increase 0 < x < 1 means a decrease.	C1		C1 for clarity that a decrease has a multiplier between 0 and 1 and increase has a multiplier greater than 1 (a multiplier of 1 will not change the value)	
			8		manipiler of 1 will not change the value)	
17 a	Comparing salary in May and April: £1568 – £1544 = £24 Comparing sales in May and April: £24 is earned on £4000 sales. 24 000 \div 4000 = 6		B1 C1	3	B1 for subtraction of April salary from May salary C1 for clearly comparing the salary difference with the sales difference	М
	$6 \times \pounds 24 = \pounds 144$ $\pounds 1544 - \pounds 144 = \pounds 1400$ So the basic salary is £1400. $\pounds 1553 - \pounds 1400 = \pounds 153$		B1		B1 for division and multiplication to establish basic salary (ft)	
	$\frac{153}{24} = \frac{51}{8} = 6.375$ 6.375 × 4000 = £25 500	£25 500	B1		B1 for correct calculations to find sales figure (ft)	
b	Own question	Own question	C1		C1 for clear question with reasoning and solution	
			5			

18	Number on Saturday = 2 × number on Friday $S \times 1.5 = (2F) \times 1.5$ $S = \frac{3F}{1.50} = 2F$	There are s Saturday as more visitor Friday.	s on Frida	y. There	are 10	0%	C1 1	3	C1 for an explanation that includes an appreciation that the two sets of visitors increase proportionally and that the original proportion therefore does not change oe	М
19 a	Number of workers = W Number of days = t K = constant $W = \frac{K}{t}$ $2 = \frac{K}{20}$ so $k = 40$ $W = \frac{40}{t}$ With 3 workers: $3 = \frac{40}{t}$ $t = \frac{40}{3} = 13\frac{1}{3}$ days This is Thursday of week 3.	They would	d finish afte	er 13 1 d	ays.		M1 B1	3	M1 for finding constant of proportionality B1 for division of 40 by 3 and relating this to number of days worked	Μ
b		They would way and wo the job in a Some jobs finished, for until the wa	very short have to war r example,	e able to t time. ait until o they ca	comple others a n't pain	ete are	C1 3		C1 for an appropriate reason oe	
20		taken Distance 1 Total £: (A)		10 min 3 miles £6.50		-	P1 B1 B1 3	2 3	P1 for process of finding charges B1 for working out current price structure B1 for correct calculation of a pricing structure that has an element of competition The suggestion (B) competes for short distances, matches for mid distances and is not competitive for longer journeys.	М

<u> </u>	Trough 20 miles in 45 minutes	01	<u> </u>	Of far correct cyplonation with colorilation that	Ν.4
		CI	2		М
	45 minutes = $\frac{3}{4}$ hour			every 60 minutes oe	
	$\frac{30}{3/} = \frac{3 \times 4}{3} = \frac{120}{3}$				
	/4	C1		C1 for clear explanation	
	Not changing minutes into hours.	C1		C1 for stating a common misconception	
	Units of speed = $\frac{\text{units of distance}}{\text{units of time}}$	C1			
				distance and time	
	Own easy and difficult examples	B2		B1 for one easy and one difficult example with	
		6		Bi for multiple different examples	
A rectangle 1 m × 2 m		P1	2	P1 for process of trial and improvement	М
			3		
A rectangle 4 m x 8 m Area = 32 m^2					
Length scale factor = 4		A1		A1 cao	
Area scale factor = $16 (4^2)$	32 m ²	1			
75 ÷ 30 = 2.5	78.125 litres		2		М
Length scale factor is 2.5		B1	3	B1 for calculation of length scale factor	
		-		AT CaU	
	40.45	-		D4 for a lowletting of log other and for the	N.4
	12.15 M ²		3		М
450 × 27 000 = 12 150 000 cm ³					
$(\div 100^3 \text{ for } \text{m}^3)$		M1		M1 for correct conversion to cubic metres	
$= 12.15 \text{ m}^{\circ}$				AT Cao	
Longth apple factor 19 : 12 1 5	2 amolt ting can be filled from and large		2	D1 for coloulation of length cools factor	М
	tin.		2	M1 for calculation of length scale factor	IVI
Volume of paint in big tin = 800 ml × $(1.5)^3$					
= 2700 ml		A1		A1 cao	
$2700 \div 800 = 3.375$		3			
	Area = 2 m^2 A rectangle 4 m x 8 m Area = 32 m^2 Length scale factor = 4 Area scale factor = 16 (4 ²) 75 ÷ 30 = 2.5 Length scale factor is 2.5 Volume scale factor is 2.5 Volume scale factor = $323 \text{ m}^3 \text{ m}^3 \text{ m}^3 \text{ m}^3$ Length scale factor = $450 \div 15 = 30$ Volume scale factor = $30^3 = 27\ 000$ $450 \times 27\ 000 = 12\ 150\ 000\ \text{ cm}^3$ ($\div\ 100^3\ \text{ for m}^3$) = 12.15 m ³ Length scale factor = $18 \div 12 = 1.5$ Volume scale factor = $(1.5)^3$ Volume of paint in big tin = 800 ml x (1.5) ³	A rectangle 1 m x 2 m Area = 2 m²Own easy and difficult examplesA rectangle 1 m x 2 m Area = 2 m² $32 m^2$ A rectangle 4 m x 8 m Area = 32 m² $32 m^2$ Length scale factor = 4 Area scale factor = 16 (4²) $32 m^2$ 75 ÷ 30 = 2.5 Length scale factor is 2.5 Volume scale factor is $(2.5)^3 = 15.625$ $5000 \times 15.625 = 78,125 cm^3 = 78.125$ litres 78.125 litresLength scale factor = 450 ÷ 15 = 30 Volume scale factor = 30^3 = 27 000 $450 \times 27 000 = 12 150 000 cm^3$ $(÷ 100^3 for m^3)$ $= 12.15 m^3$ $12.15 m^3$ Length scale factor = 18 ÷ 12 = 1.5 Volume scale factor = (1.5)^3 Volume of paint in big tin = 800 ml x (1.5)^3 3 small tins can be filled from one large tin.	$ \begin{array}{ c c c c c } & 45 \text{ minutes} = \frac{3}{4} \text{ hour} \\ & \frac{30}{\frac{3}{\frac{7}{4}}} = \frac{3 \times 4}{3} = \frac{120}{3} \\ & = 40 \text{ mph as required} \\ & \text{Not changing minutes into hours.} \\ & \text{Units of speed} = \frac{\text{units of distance}}{\text{units of time}} \\ & \text{C1} \\ & \text{Own easy and difficult examples} \\ & \text{B2} \\ \hline \\ & & \text{A rectangle 1 m x 2 m} \\ & \text{Area = 2 m^2} \\ & \text{A rectangle 4 m x 8 m} \\ & \text{Area = 2 m^2} \\ & \text{A rectangle factor = 16 (4^2)} \\ & \text{75 \div 30 = 2.5} \\ & \text{Length scale factor is 2.5} \\ & \text{Volume scale factor is 2.5} \\ & \text{Volume scale factor is 2.5} \\ & \text{Volume scale factor = 4 \\ & \text{Area Scale factor is 2.5} \\ & \text{Volume scale factor is 2.5} \\ & Volume scale factor i$	$ \begin{array}{ c c c c c } & 45 \text{ minutes} = \frac{3}{4} \text{ hour} & & & & \\ & \frac{30}{\frac{3}{4}} = \frac{3 \times 4}{3} = \frac{120}{3} & & \\ & = 40 \text{ mph as required} & & & \\ & \text{Not changing minutes into hours.} & & & \\ & \text{Units of speed} = \frac{\text{units of distance}}{\text{units of time}} & & & \\ & \text{C1} & & \\ & \text{Units of speed} = \frac{\text{units of distance}}{\text{units of time}} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{Units of speed} = \frac{\text{units of distance}}{\text{units of time}} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C2} & & & \\ & \text{C1} & & \\ & \text{C2} & & \\ & \text{C1} & & \\ & \text{C2} & & \\ $	45 minutes = $\frac{3}{4}$ hourindicates 10 miles every 15 minutes implies 40 miles every 60 minutes every 60 minutes involves of every 60 minutes or $\frac{30}{\frac{3}{4}} = \frac{3 \times 4}{3} = \frac{120}{3}$ = 40 mph as requiredC1C1 for clear explanationNot changing minutes into hours. Units of speed = units of distance units of timeC1C1 for clear explanationOwn easy and difficult examplesB2B1 for one easy and one difficult examplesB2A rectangle 1 m x 2 m Area = 2 m²P12 3P1 for one easy and one difficult examplesA rectangle 4 m x 8 m Area = 2 m² A rectangle 4 m x 8 m

26 a	New area is $(a \times 1.15)^2$ = $a^2 \times 1.15^2$ = $1.3225a^2$ Percentage increase = $(1.3225 - 1) \times 100\%$	Area increases by 32.25%.	M1 A1	2	M1 for use of correct multiplier showing 15% increase A1 cao	Μ
b	$b \times 0.95$ $a \times 1.15$ Area = $a \times 1.15 \times b \times 0.95$ = $ab \times 1.15 \times 0.95 = 1.0925ab$		М1		M1 for use of correct multiplier showing 15% length increase and 5% width decrease	
	Percentage increase (1.0925 – 1) × 100%	Area increases by 9.25%.	A1 4		A1 cao	
27 a	$\begin{array}{ c c c c c c }\hline A & B & C \\ \hline 5 & 4 & 17 \\ \hline 4 & 3.2 & 13.6 \\ \hline 2 & 1.6 & 6.8 \\ \hline 8 & 6.4 & 27.2 \\ \hline 12 & 9.6 & 40.8 \\ \hline 6.8 & 5.44 & 23.12 \\ \hline 2.8 & 2.24 & 9.52 \\ \hline \hline \\ \hline $	Yes, there is sufficient information.	C1	2	C1 if all three ratios are shown as part of the explanation and justification of answer	Μ
b	13 items e.g. A B C • • • • • • • • • • • • •		C1		C1 for clear explanation of as many values entered as possible such that one variable remains isolated from the other two oe	

С	One variabl 9 items e.g.		from the other two.					
	A •	•	C • • • •		C1		C1 for clear explanation that there should be at least one value in each row and two rows should have at least two values linking a different pair of A, B, C oe	
d	row and two pairs linking Always star quantities a quantity, so three are kr out other qu	o rows should a different p t in a row wh re given, to v that relation nown. Then u antities. nple there are	ere at least 2 work out the third ships between all use these to work		C1 C1 5		C1 for clear explanation C1 for explanation of the best starting point and stating how many different starting points there are	
28	= $\pounds 8000 + \pounds$ = $\pounds 8172.80$ In year 2: $\pounds 8172.80 \times \pounds$ Interest = $\pounds 2$ Less 20% ta $\pounds 220.67 \times 0$. At end of yea	216 ax: = £172.80 at end of ye 2172.80 0.027 = £220 220.67 x: .8= £176.54	0.67	No, Sam is incorrect. She will have £8349.34 See workings as explanation.	P1 B1 B1 C1 4	2	P1 for use of correct multipliers B1 for multistep calculation for year 1 B1 for multistep calculation for Year 2 (ft) C1 for clarity of explanation through setting out of calculations	М

29	$B \times 0.8^{n} < \frac{B}{2}$ Divide both sides by <i>B</i> . $0.8^{n} < \frac{1}{2}$ $0.8^{3} = 0.512$ $0.8^{4} = 0.4096$ OR £100 × 0.8 = £80 £80 × 0.8 = £64 £64 × 0.8 = £51.20 £51.20 × 0.8 = £40.96	4 weeks	P1 M1 P1 A1 4	2	P1 for choosing a starting a position, either a variable such as <i>B</i> or a specific amount such as £100 M1 for working through the weeks in some way P1 for the process of finding amounts for weeks 3 and 4 to show the point at which the bank account first dips below 50% of the original balance	Н
30		i graph d ii graph e iii graph b iv graph c v graph f vi graph a	B6 6	2	B1 for each correctly identified graph with reference to why, for example: $f(x) \propto x^2$ is graph d as points are (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) and it is a parabola f(x) = 2x, $x > 0$ $f(x) = -2x$, $x < 0$ is graph e as it is linear and has no negative $f(x)$ values; the gradient is 2 and -2	Н
31 a		Inverse proportion describes the relationship between two variables such that as one increases the other decreases.	C1	2	C1 for clear explanation of inverse proportion	Н
b	$y = \frac{k}{x}$ xy = k where k is the constant of proportionality	xy = k or $y = \frac{k}{x}$	M1		M1 for correct equation	
c		Own problem, for example: It takes 5 men 10 days to dig a hole. The number of men, <i>y</i> , is inversely proportional to the number of days, <i>x</i> . How long would it take for ten men to dig the same hole? (5 days)	C1 3		C1 for clear question	

32 a		$F_g = \frac{Gm m}{\frac{1}{2}}$	M1	2	M1 for correct function	Н
b	$r = 6 \times 10^3 \mathrm{m}$	d^2	D4			
	$F_1 \propto \frac{1}{(6 \times 10^3)^2}$		B1		B1 for calculation of F_1 and F_2	
	$= \frac{1}{3.6 \times 10^{7}}$ $F_{2} \propto \frac{1}{(6 \times 10^{3} + 12)^{2}}$					
	$= \frac{1}{3.6144 \times 10^7}$					
c	$\frac{F_{1}}{F_{2}} = 0.996$	0.996 to 3 dp	A1		A1 cao	
C		The difference is too small (reference part b).	C1		C1 for correct interpretation of a scale factor close to 1	
33		· · · · · · · · · · · · · · · · · · ·	4			
33		< <u>20</u> → 10 →	M1 C1	2	M1 for recognising and using the ratio of the speeds C1 for clarity of reasoning and explanation, diagram oe	Н
		s $\frac{s}{2}$ The speed of the faster car is 40 mph. $T = \frac{20}{40} = \frac{1}{2}$ So they meet after 30 minutes. Speeds are in the ratio	A1		A1 cao	
		1 : $2 = 20$: $40 = 10$: 20 So the cars meet when the slower car has travelled 10 miles and the faster car has travelled 20 miles. It will take half an hour for a car travelling at 20 mph to go a distance of 10 miles.				
			3			

34	$4y = 2x^2$	3	M1	2	M1 for rearranging and substituting given values of x	Н
	$y = \frac{x^2}{2}$					
	_					
	gradient = $\frac{f(x_2) - f(x_1)}{2}$					
	$\frac{4^2}{2}$ - $\frac{2^2}{2}$					
	$=\frac{\frac{4^2}{2} - \frac{2^2}{2}}{2}$ $=\frac{8 - 2}{2}$					
	$=\frac{8-2}{2}$					
	2 = 3		A1		A1 cao	
			2			
35		$\frac{f(x+h) - f(x)}{h} = \frac{\frac{(2+2)^2}{2} - \frac{2^2}{2}}{2}$	M1	2	M1 for appropriate substitution to enable comparison with Q35	Н
		$=\frac{\frac{4^2}{2}-\frac{2^2}{2}}{2}$				
		2	C1		C1 for showing that the two functions give the same	
		As above.	2		answer	
36 a	f(x) = mx + c	As working	A1	2	A1 for clarity of proof	Н
	The gradient = $\frac{m(x+h)+c-(mx+c)}{h}$		P1		P1 for accuracy with manipulation of function	
	$=\frac{mx+mh+c-mx-c}{h}$					
	h = m					
b	$f(x) = \frac{x^2}{2}$ at $x = 2$	As working	A1 P1		A1 for clear reasoning P1 for accuracy with manipulation of function to show a	
			FI		gradient of 2	
	The gradient = $\frac{\frac{(x+h)^2}{2} - \frac{x^2}{2}}{h}$					
	Ine gradient = $\frac{h}{h}$					
	$=\frac{1}{2}(2x+h) h \to 0$					
L	1					

	$=\frac{1}{2} (2x) = x$ At x = 2, gradient = 2. From the graph, points on the tangent are (1, 0) and (2, 2). The gradient = $\frac{2-0}{2-1} = 2$		M1		M1 for gradient from points on the straight line	
37 a b	£28 000 × $1.05^3 = £32\ 413.50$ £14 500 × $1.05^n > £\ 20\ 000$ $\frac{20\ 000}{15\ 400} = 1.4$ Try <i>n</i> = 7 years. £14 500 × $1.05^7 = £20\ 402.96$	£32 413.50 7 years	B1 M1 A1 3	2	B1 for identification and use of multiplier M1 for trial and improvement or reasoning to try 7 years A1 cao	Н
38	Sycamore: $4 \times 1.08^{11} = 9.327$ $4 \times 1.08^{12} = 10.073$ Conifer: $2 \times 1.15^{11} = 9.305$ $2 \times 1.15^{12} = 10.7$	12 years After 11 years, the sycamore is 9.326 m tall and the conifer is 9.305 m tall. After 12 years, the sycamore is 10.073 m tall and the conifer is 10.7 m tall.	M1 B1 P1 3	2	M1 for correct calculation method to find heights of trees B1 for clarity of final reasoning P1 for finding all four heights after 11 and 12 years	Н

39 a	$A \times 1.04^n = 2A$ Divide both sides by A.		M1	2	M1 for appropriate iterations to find 2A	Н
	$1.04^{n} \ge 2$ $1.04^{10} = 1.48 (2 dp)$ $1.04^{15} = 1.80 (2 dp)$ $1.04^{20} = 2.19 (2 dp)$ $1.04^{17} = 1.95 (2 dp)$ $1.04^{18} = 2.03 (2 dp)$	18 years	A1		A1 cao	
b	,	To years	M1		M1 for appropriate iterations to find number of bounces	
5	$10 \times \left(\frac{3}{5}\right)^n = 1$					
	$\left(\frac{3}{5}\right)^n = 0.1$ $0.6^n = 0.1$ $0.6^2 = 0.36$ $0.6^5 = 0.077\ 76$					
	$0.6^4 = 0.1296$	4 bounces	A1		A1 cao	
с		Own problem	C1		C1 for clarity, relevance and accuracy of own question	
			5			
40 a	$f(x) = a(b)^{x}$ Day Number of bacteria 0 1 1 2 2 4 3 8 4 16 5 32 6 64 = 2 ⁶	$2^6 = 64$ The population doubles each day.	M1 A1	2	M1 for correct iterations A1 cao	H
b		 a and b are constants. a is the starting size of the population and so doesn't change. b is the multiplier (by how much the population grows each day) and the value of this doesn't change. x is a variable as it represents the changing number of days. 	C3		C3: one mark for each explanation of <i>a</i> , <i>b</i> and <i>x</i>	

41 i ii iii		$F(x) = a(b)^{x}$ b < 1 the population decreases. b = 1 the population stays the same. b > 1 the population increases.	C3 3	2	C1 for each correct explanation of the impact on the population as <i>b</i> varies	Н
42 a	Epidemic started by a single carrier so $x_0 = 1$. Considering infection after 10 days so	$x_{n+1} = R^t x_0$ $x_{10} = R^{10}$	M1 A1	2	M1 for correct interpretation of , and use of, the iterative formula A1 for cao	Н
b	<i>t</i> = 10.	Newspaper headline to engage readers with the story of this epidemic e.g. how long before x people are infected.	C1 3		C1 for relevant , informative headline	
43	$p = e^{-\frac{h}{7}}$ = (2.72)^{-\frac{5.895}{7}} = 2.72^{-0.842}	0.43 bar	M1 A1	2	M1 for correct use of formula A1 cao	Н
	= 0.430 555 245		2			
44 a	$x = 1 + \frac{11}{x - 3}$ x(x - 3) = x - 3 + 11 x ² - 3x = x + 8 x ² - 4x - 8 = 0	Show that as workings.	M1 C1	3	M1 for algebraic manipulation C1 for clarity of justification	Н
b	if $x_1 = 5$ $x_2 = 1 + \frac{11}{(5-3)} = 1 + \frac{11}{2} = 6.5$		M1 B1		M1 for correct use of iteration B1 for substitutions	
	$x_3 = 1 + \left(\frac{11}{6.5 - 3}\right) = 4.14286$	<i>x</i> = −1.46 to 2 dp	A1 5		A1 for one root found (no credit if both roots are found) Using $x = 5$ as the first iteration, after 19 iterations you arrive at $x = -1.46$ to 2 dp Likewise, if the first trial is -1, 11 iterations lead to the solution $x = -1.46$ to 2 dp.	