Guidance on t	Guidance on the use of codes for this mark scheme				
М	Method mark				
А	Accuracy mark				
В	Working mark				
С	Communication mark				
Р	Proof, process or justification mark				
cao	Correct answer only				
oe	Or equivalent				
ft	Follow through				

Question	Working	Answer	Mark	AO	Notes	Grade
1 a	Example $2 \times 3 = 6$ 2 + 2 = 5	$2n$ means $2 \times n$ which is different from $n + 2$.	C1	2	C1 for explanation; an example could be given to support the argument	В
	2+3=5		C1		An additional mark can be given for identifying the exception, which is when $n = 2$	
b	3(c + 5) = 3c + 15		M1		M1 for multiplying out the brackets to show that the two expressions are not equivalent	
С	Example $3^2 = 3 \times 3 = 9$	n^2 means $n \times n$ which is different from $2n$.	C1		C1 for explanation; an example could be given to support the argument	
	2 × 3 = 6		C1		An additional mark can be given for identifying the exception which is when $n = 2$	
d	Example	BIDMAS for $2n^2$ tells you to calculate	C1		C1 for an explanation; an example could be given to	
	$2n^2 = 2 \times (3^2) =$ $2 \times 9 = 18$ $(2 \times 3)^2 = 6 \times 6 = 36$	you that you do the calculation inside the bracket first.			support the argument	
			6			
2		A letter, say f , stands for an unknown if it is in an equation such as $3f + 2 = 14$.	C1	2	C1 for a clear explanation	В
		Then $f = 4$ is the only number that satisfies this equation.	C1		C1 for an example alongside the explanation	
		A letter stands for a variable if it is part of an equation that has more than two letters, e.g. $A = \pi r^2$, where both <i>A</i> and <i>r</i> are variables that will be different for	C1 C1		C1 for a clear explanation C1 for an example alongside the explanation	
		different values of A or r.	4			

3 a	5(c + 4) = 5c + 20 Feedback: Don't forget to multiply out both terms in the brackets.		M1 C1	2	M1 for correctly expanding the brackets C1 for suitable feedback	В
b	6(t-2) = 6t - 12 Feedback: Don't forget $6()$ means multiply both terms by 6.		M1 C1		M1 for correctly expanding the brackets C1 for suitable feedback	
С	-3(4 - s) = -12 + 3s Feedback: Don't forget $-3()$ means multiply both terms by 6 and minus x minus =		M1 C1 M1		M1 for correctly expanding the brackets C1 for suitable feedback M1 for correctly expanding the brackets	
d	15 - (n - 4) = 15 - n + 4 = 15 + 4 - n = 19 - n Feedback: Don't forget $-(n - 4)$ means multiply each term inside the brackets by -1 and that the - inside the brackets belongs to the 4 to make it - 4.		C1 8		C1 for suitable feedback	
4		Start with numbers that work. $\frac{(6 - 1)}{2} = 2.5$	M1	2 3	M1 for first method, e.g. starting with numbers	В
		So $z = \frac{(s - 1)}{z}$ will satisfy conditions.	A1		A1 for an example that works	
		Start with a formula. e.g. $z = \frac{(3s - 4t + x)}{2}$	M1		M1 for second method, e.g. starting with a formula	
		Substitute $z = 2.5$, $s = 6$, $t = 2$ to find x . 5 = 18 - 8 + x	B1		B1 for an example that works	
		x = -5 so $z = \frac{(3s - 4t - 5)}{2}$ satisfies conditions.	C1		C1 for a clear, complete solution showing two different methods and two examples	
		2	5			
5		$\frac{(2n+6)}{2}$	M1 B1	2	M1 for factorising B1 for any correct expression	В
		$=\frac{2(n+3)}{2}$				
		= n + 3	2			

6	Let the base length be <i>b</i> , then the height will be 3 <i>b</i> .	C1 C1	3	C1 for stating variables C1 for stating triangle formula	В
	Area of triangle = $\frac{1}{2}$ × base × height	B1		B1 for correct expression	
	$= \frac{1}{2} \times b \times 3b$ $= \frac{3}{2}b^{2}$ Where $A = 6$ $\frac{3}{2}b^{2} = 6$ $b^{2} = \frac{2 \times 6}{3} = 4$ b = 2 so height is 3 × 2 which is 6 cm.	M1 A1 A1		M1 for equating 6 with found expression A1 for $b = 2$ A1 for 6 cm	
		6			
7	Boys get: one red egg each from each of 4 girls = 4 red one green egg from each other = 2 green Girls get: one blue egg from each of the 2 boys = 8 blue one yellow egg from each other = 3 yellow eggs each = 12 yellow altogether.	C1 C1 C1 C1 C1 C1 C1 5	3	C1 for explanation of 4 red C1 for explanation of 2 green C1 for explanation of 8 blue C1 for explanation of 12 yellow C1 for complete clear solution	В
8 a b c d e f	Abi Abi stopped 12 minutes Bryn By 1.8 km 4.5 km Another suitable question	B1 B1 B1 B1 B1 C1 C1 C1 8	3	B1 cao B1 cao B1 cao B1 cao B1 cao B1 cao C1 for suitable question using a linear function C1 for a suitable graph	В

9 a	Need to find both times when $h = 0$. Substitute $u = 16$ m/s into the equation. $16t - 5t^2 = 0$ t(16 - 5t) = 0 so $t = 0$ or $(16 - 5t) = 0$ t = 0 or $5t = 16$		C1 M1	3	C1 for clear explanation M1 for setting $h = 0$	
	t = 3.2	3.2 s	A1 A1		A1 for 0 and 3.2 A1 for 3.2 seconds	
b	Maximum height = $16 \times 1.6 - 5 \times 1.6^2$ = 25.6 - 12.8 = 12.8 m		C1 B1		C1 for substituting $t = 1.6$ B1 for 12.8 m	
с	$h = ut + 5t^2 + 1$		B1 7		B1 cao	
10 a	Use $s = ut - \frac{1}{2}gt^2$.	Parabola/quadratic equation	B1	3	B1 for either of these	В
b	Assuming $g = 10$, given $u = 8 \sin \theta$ and assuming suitable value for θ , for example, 30° sin 30° = 0.5 So $s = -5t^2 + 4t$ Complete the square to give:		C1		EC for stating suitable assumptions for the starting point	
	$(t - \frac{4}{10})^2 - (\frac{4}{10})^2 = 0$ Comparing this to the equation of $y = x^2$. Then the borse will reach its maximum at		P1		P1 for a suitable method for finding greatest height, could also be sketch graph	
	t = 0.4. Substitute this into $c = 5t^2 + 4t$		M1		M1 for suitable comparison	
	to give $s = 0.8$ m.	<i>s</i> = 0.8 m	A1		A1 for ft from the initial assumption	
с		Suitable justification, e.g. Yes it does, the horse is in the air for 0.8 s and	A1		A1 cao	
		jumps 0.8 m into the air.	6			

11 a	50 000 40 000 ¹ / ₂ 30 000	Minimum demand = 1 So 1 = 45 000 - 175P 175P = 44 999 $P = \frac{44 999}{175}$	C1 M1	3	C1 for a clearly graph drawn M1 for method of solving equation when demand = 1	В
		$= \pounds 257$	A1		A1 for answer £257	
	This graph shows expected sales for the different prices charged. If he prices his snowboard at more than £257 demand will be 0.		C1		C1 for a clear explanation	
b	The graph also shows that the cheaper the snowboards, the more he will sell. But he needs to consider his charges to make sense of it all.		C2		C1 for explaining the relationship C1 for commenting that there will be other costs to take into account	
с	Number sold = 450 00 – 175 <i>P</i>	Demand = 45 000 + 95P				
	Sales = number sold $\times P$		M1		M1 for setting up the sales equation	
	$= (45\ 000 - 175P)P$					
	per board					
		Profit = sales - costs Profit = $(45\ 000 - 175P)P$ - $(45\ 000 + 95P)$	M1		M1 for setting up the profit equation	
		$= 45\ 000P - 175P^2 - 45\ 000 - 95P$				
d		= 44 905 <i>P</i> - 175 <i>P</i> ² - 45 000	A1		A1 for cao	
		From a graph of this quadratic function, his maximum profit would be approximately £2 850 000 if he sold his boards at £135	B2		B1 for profit between £2 800 000 and £2 900 000 B1 for cost of boards between £120 and £140	
		1115 DUALUS AL 2 155.	C1		C1 for a drawn graph of the quadratic equation found	

	you are stateboard (£)	10			
12 a	ii, v and vi might be difficult as they all involve squaring a term. The typical error made in ii will be to calculate half of <i>at</i> and then to square that. The same error can be found in vi where $2\pi r$ can be calculated first and then squared.	B2	2	B1 for identifying some examples with a valid reason B1 for clear identification and explanation of classic errors	М
b	ii and vi are also difficult to rearrange as they involve a quadratic element and it's not easy to make each variable the subject of the formula. Typical errors in rearranging the equation $s = ut + \frac{1}{2}at^2$ to make a the subject include: • incorrect sign when changing sides, e.g. $s + ut = \frac{1}{2}at^2$ • incorrect removal of fraction, e.g. $\frac{1}{2}$ to leave $(s + t) = at^2$.	B2		B1 for identifying some examples with a valid reason B1 for clear identification and explanation of classic errors	

		<u> </u>	_		
13	c and d can be difficult because they contain minus signs; errors are often made when combining minus signs. In substituting $x = -3$ into $t = -2(3 - x)$,	C1	2	C1 for identifying some examples with a valid reason	м
	a common error is to assume 3 – -3 is 0. In substituting $x = -3$ into $z = \frac{-2(x + 2)}{2}$	C2		C1 for clear identification of one typical error with one equation.	
	a typical error is to assume a negative divided by a negative gives a negative answer.			C1 for another typical error	
	A suggestion to avoid these errors is to remember that when multiplying or dividing with positive and negative numbers, same signs means positive, different signs means negative.	C1		C1 for a satisfactory suggestion	
		4			
14	The similarities are that both include an equals sign and both require the manipulation of terms.	B1	2	B1 for clear explanation of similarities	М
	The difference is that in solving an equation you reach a numerical answer, but in rearranging you still	B1		B1 for clear explanation of differences	
	have a formula.	2			
15	In line 2 Phillip has initially rearranged $x^2 + 2x - 3$ to $x(x + 2) - 3$ when he should have factorised it as $(x + 3)(x - 1)$.	B1	2	B1 for identifying the first error	М
	He has incorrectly simplified in line 3. He should have factorised $(x^2 - 9)$ to $(x + 3)(x - 3)$	B1		B1 for identifying the second error	
	Philip has cancelled incorrectly just by looking at the different numbers and not realising that you can only cancel a number on both numerator and denominator if it is a factor of the complete expression.	C1		C1 for a clear explanation of the errors made	
	denominator if it is a factor of the complete expression.	3			

16 a	'I think of a number and double it' just means an expression of $2x$, where x is the number I thought of – still unknown at the moment. 'I think of a number and double it – the answer is 12' has a solution that I know is 6.	C1	2	C1 for clear explanation of the difference	М
bi ii iii	One e.g. $10 = p + 3$ Because each solution is $p = 7$.	B1 B1 C1 4		B1 cao B1 a correct example C1 a clear explanation	

17 a	An expression is any con letters and numbers. e.g.	nbination of $3x + 5y$.	C4	2	C1 for explanation of expression	Μ
	An equation contains an and at least one variable, $3x + 5y = 10$.	equals sign , e.g.			C1 for explanation of equation	
	A formula is like an equa a rule for working out a p value, such as the area c or the cost of cleaning wi A = lb, where A is area, l b is breadth.	tion, but it is articular of a rectangle ndows, e.g. is length and			C1 for explanation of formula	
b	An identity looks like a fo true for all values, e.g. $(x + 1)^2 = x^2 + 2x + 1$ is true for all values of <i>x</i> .	ormula but it is			C1 for explanation of identity	
	For example: State whether each item expression, equation, for	is an mula or				
	identity. Explain why.	2x + y = 6	C3		C1 for an activity that works	
	b $m^2 = m \times m$	$5x^2 - 3$			C1 for plenty of practice	
	10 = <i>x</i> – 7	$A = \frac{1}{2} bh$			C1 for quality of activity	
	c $v = ut + \frac{1}{2}at^2$	10 – 5 <i>t</i>				
	$x^2 = 16$	$5p = 5 \times p$				
	d $y = x^2 - 1$	$v = \frac{b^2 h}{3}$				
	$x^2 - 1 = (x + 1)(x - 1)$	$\frac{6}{\mathbf{y}}$				
			_			
			7			

18 a	The two straight-line graphs will be parallel, with the same gradient of 2, y = 2x crosses the y-axis at the origin, and $y = 2x + 6$ crosses the y axis at y = 6	C2	2	C1 for explanation of parallel C1 for explanation containing points of intersection of axes	М
b	The two straight-line graphs will be parallel, having the same gradient of 1, y = x + 5 crosses the y axis at $y = 5$, and $y = x - 6$ crosses the y axis at y = -6	C2		C1 for explanation of parallel C1 for explanation containing points of intersection of axes	
с	The two straight-line graphs will cross each other at $(\frac{11}{8}, \frac{1}{2})$ and each one is	C2		C1 for explanation containing point of intersection C1 for explanation of symmetry	
	a reflection of the other in a vertical mirror line.				
d	The two straight-line graphs will both cross the <i>y</i> -axis at the origin, one with	C2		C1 for explanation of passing through origin C1 for explanation about gradient	
	gradient 2, the other with gradient $\frac{1}{2}$.	8			
19 a	The gradients represent how quickly the variable on the <i>y</i> -axis changes as the variable on the <i>x</i> -axis changes.	C1	3	C1 for clear explanation	M
Ь	The intermediate points will only have any meaning for continuous data, such as mass or height. If the data is discrete then the points will only have values when they coincide with actual data.	C2		C1 for clarity of continuous data C1 for clarity of discrete data	
с	The intercept indicates a value that must be added to a variable value, such as a standing charge of £3.50 for a taxi fare, being included before adding on a rate per km.	C1		C1 for clear explanation, using an example	
		4			

20 ai	The highest power will be 2 with no negative powers, e.g. $y = x^2 + 3x - 1$, where 2 is the highest power.	C1 C1	2	C1 for clear explanation C1 for also using an example	М
ii	The highest power will be 3 with no negative powers, e.g. $y = x^3 + 5x^2 - 6$, the 3 being the highest power.	C1 C1		C1 for clear explanation C1 for also using an example	
b	Find points that cross the axes where possible and then create a table of values including for the turning point and the axis intercepts so that you have sufficient points to plot the curve.	C1		C1 for clear explanation	
с	1: x^2 is always positive for positive or negative values of x , hence $2x^2$ will also be positive as positive multiplied by positive is positive. The +5 moves the graph up 5, so $y = 2x^2 + 5$ will also always be positive for all values of x	C1		C1 for first explanation	
	2: Draw the graph and illustrate all the points on the graph are above the x axis.	C1		C1 for second explanation	
		7			
21 a	A quadratic function always has line symmetry because x^2 and $(-x)^2$ have the same y value.	C1	2	C1 for clear explanation	М
b	A cubic equation does not have a line of symmetry as A^3 will have different values depending on whether A is negative or positive.	C1		C1 for clear explanation	
С	Rotational symmetry of order 2 about the point of inflection.	C1		C1 for clear description	
		3			
22 i	D, $y = 5x^2$	B1	3	B1 correct letter with correct example	М
ii	B, $y = \frac{12}{x}$	B1		B1 correct letter with correct example	
iii	A, $y = 0.5x + 2$	B1		B1 correct letter with correct example	
iv	C, $d = \sqrt{A}$	B1		B1 correct letter with correct example	
		4	1		

23	y kg 4 kg x 5	As they are balanced $12=xy$ Therefore rearranging $y = \frac{12}{x}$, they are inversely proportional.	C1 B1 C1 3	3	C1 for a good diagram accompanying the explanation. B1 for the equation C1 for the correct explanation of the relationship	Μ
24 a b		Any two examples of the form $y = x^3 + c$, e.g. $y = x^3 + 7$, $y = x^3 - 4$. They are all quadratics. All of them pass through the origin except $y = 4x^2 + 3$. $y = 4x^2$ and $y = 4x^2 + 3$ have the same shape, but the latter is moved up 3 units.	B1 B1 C3 5	2	B1 for the first example B1 for the second example C1 for similarities C2 for differences	Μ
25		Sometimes true. It is only true when $a > 0$.	B1 C1 2	2	B1 for sometimes C1 for explanation	Μ
26		When you draw the graphs of $y = 4x^2$ and $y = -4x^2$ you get the graphs shown here.	C1	2	C1 for explanation of drawing a graph of each on the same axes	М
		y 40 30 $y = 4x^2$ 20 10 10 2 -3 -2 -10 -30 -30 -30 $y = -4x^2$	C1		C1 for an accurate diagram of both graphs on the same pair of axes	
		It can be seen that $y = 4x^2$ is a reflection of the graph of $y = -4x^2$ in the <i>x</i> -axis.	P1		P1 for clear explanation bringing everything together.	
			3			

27	$\frac{3u}{4} \underbrace{\int_{0}^{4} \frac{1}{5} \times 2u}_{0} \times 0.5}_{\text{Time}} = \frac{10 \times 3u}{15 \times u} \underbrace{\int_{0}^{4} \frac{1}{5} \times 2u}_{15} \times 0.5}_{\text{Time}} = \frac{10 \times 3u}{15 \times u} \underbrace{\int_{0}^{4} \frac{1}{5} \times 0.5}_{\text{Time}} \times 0.5}_{\text{Time}}$ Drawing a velocity/time graph allows us to illustrate the journey. The area under the graph is the distance travelled.	Distance travelled = $\frac{1}{2}(15 \times (u + 3u)) + (10 \times 3u) + \frac{1}{2}(20 \times 3u)$ = $30u + 30u + 30u = 90u$ The assumption is that acceleration is at a steady rate when the motorbike speeds up and slows down.	C1 M1 A1 A1 5	3	C1 for a good diagram illustrating the journey M1 for method of using $\frac{v}{t}$ diagram M1 for correct area equation A1 cao A1 for clear explanation of assumption.	М
28 a		x = 0	B1	2	B1 cao	М
b		The circle has a radius of 5 and its centre is at (0, 0), halfway between D and E. Find the distance of F(-3, 4) from the origin. If it is 5 units from the origin, it is on the circumference of the circle. Using Pythagoras' theorem: distance = $\sqrt{3^2 + 4^2} = \sqrt{25} = 5$ So F(-3, 4) is on the circumference of the circle.	C2		C1 for explanation referring to a right angle triangle C1 for explaining how using Pythagoras' theorem helps in finding the length 5	
c		The tangent at F will be at right angles to the line joining the point to the origin. Gradient of the line is $-\frac{4}{3}$. The product of the gradient of this line and the tangent is -1. Use this to work out the gradient of the tangent. Substitute the gradient and the coordinates of the point into the general equation of a straight line ($y = mx + c$) to find the <i>y</i> -intercept <i>c</i> .	C3 6		C1 for explaining the gradient is tangent of the angle C1 for showing $y = mx + c$ C1 for complete explanation showing how to work out the equation of the line	

29 a	Use the method of elimination, in which you combine the equations to eliminate one of the variables leaving an equation in the other variable. Solve this equation then substitute the value into one of the original equations to work out the other value.	C3	2	C1 for each explanation	Μ
	Use the substitution method, in which you make one of the variables the subject of one equation and substitute this into the other equation. Solve this equation and then substitute the value into one of the original equations to work out the other value.	C3		C1 for each explanation	
	Use the graphical method, in which you draw a graph of both equations on the same axes and the solution is the point of intersection.				
b	Use the elimination method when you can eliminate one variable easily by either adding or subtracting the two equations.	P1		P1 for clear explanation of why you might use two methods	
	Use the substitution method when it is easy to make one of the variables in one of the equations the subject of the equation.				
	Use the graphical method to solve equations where there is a quadratic.				
	You might use more than one method: if you used the graphical method and didn't get integer values for the solution, you might then use the elimination method to find the fractional answers.				
		7			

30	3x - 4y = 13 (1)		3		М
	2x + 3y = 20 (2)				
	Using elimination:				
	Multiply (1) by 2 and (2) by 3	M1		M1 for method of changing equations in order to be	
	6x = 8y = 26			able to eliminate	
	6x + 9y = 20				
	0x + 3y = 00				
	second equation:				
	9y8y = 60 - 26	A1		A1 for correct equations	
	17y = 34	M1		M1 for subtracting equations	
	v = 2				
	Substitute $y = 2$ into (2):				
	$2r + 3 \times 2 = 20$	A1		A1 cao	
	2x = 14	M1		M1 for substitution	
	r = 7				
	Check by substituting both values into				
	(1)				
	$3 \times 7 - 4 \times 2 = 21 - 8 = 13$ Correct.	Δ1		A1 cao	
	Using substitution:				
	Rearrange one of the equations:				
	2x + 3y = 20	M1		M1 for rearrangement to get one variable as a subject	
	20-2x	A1		A1 cao	
	$y = \frac{1}{3}$				
	Substitute into the other equation and	M1		M1 for substitution of the one variable into the other	
	rearrange.			equation	
	$3x - 4(\frac{20 - 2x}{3}) = 13$	A1		A1 cao	
	90 P.:				
	$3x - \frac{60}{3} + \frac{6x}{3} = 13$				
	$3x + \frac{8x}{3} = 13 + \frac{80}{3}$				
	$\frac{9x+8x}{3} = \frac{39+80}{3}$				
	$\frac{17x}{3} = \frac{119}{3}$				
	1	1			

	17x = 119 x = 7 Substitute this into other equation as before to give $y = 2$.	M1 A1 12		M1 for substitution A1 cao	
31 a	The equations look awkward. The method of eliminating one variable by multiplying the first equation by 3 and the second equation by 5 will give new equations with $15y$ and $-15y$ in both of them. These terms can be eliminated by adding the two new equations.	C3	2	C1 for explanation of advantage of first C1 for explanation of first disadvantage C1 for explanation of second disadvantage	М
	Rearranging one equation to make one variable the subject will give awkward fractions and so is not desirable.	C3		C1 for explanation of advantage of first C1 for explanation of first disadvantage C1 for explanation of second disadvantage	
	It is not obvious whether drawing a graph of each equation will produce an integer solution.				
b	The first equation already has <i>y</i> as the subject and the substitution method is ideal, substituting for <i>y</i> into the second equation. The elimination method would mean unnecessary work to eliminate one of the variables. Drawing a graph would give integer values, but it would take more time than the simple substitution method.				
C	As one of the equations is a quadratic drawing graphs could the best method; this would only be justified if an integer solution was found. It seems straightforward to make <i>x</i> the subject of the first equation and then substitute it into the second equation to get a quadratic equation that could then be solved for two solutions. Because one equation is a quadratic it is not suitable to use the elimination method.	C3		C1 for explanation of advantage of first C1 for explanation of first disadvantage C1 for explanation of second disadvantage	

0					
32 a	If one of the equations is a multiple of the other then there will be an infinite	C1	2	C1 for clear explanation	М
	number of solutions, e.g. x + y = 5 2x + 2y = 10 Every point on the line $x + y = 5$ is a solution, giving an infinite number of	C1		C1 for use of a good example accompanying the explanation	
	solutions. If the equations have graphs that are parallel to each other then there will be no intersection and so no solution, e.g. x + y = 5 x + y = 6	C1 C1		C1 for clear explanation C1 for use of a good example accompanying the explanation	
bi	One solution, as one equation is not a multiple of the other and they are not parallel.	C1		C1 for clear explanation	
ii	None –the gradient is the same but the intercepts are different so they are parallel.	C1		C1 for clear explanation	
iii	Infinite number of solutions as the first equation is a multiple of the second, so drawing graphs gives the same line.	C1		C1 for clear explanation	
ci	y - 2x = -5 y = 0.5x + 1 Substitute for y in the first equation: 0.5x + 1 - 2x = -5	M2		M1 for arranging equations in a suitable format M1 equating both equations	
	-1.5x = -6 x = 4 Substitute into second equation: $y = 0.5 \times 4 + 1 = 3$ Check by substituting both values in the first equation $3 - 2 \times 4 = 3 - 8 = -5$ Correct.	A1			
ii	No solution.				
iii	Infinite number of solutions.				
d	You can see how many times the graphs cross each other.	C1		C1 clear explanation	
		11			

33 a		They are the same equation. Multiply the first equation by 3 and it is the same as the second equation, so they have an infinite number of solutions.	C1	3	C1 for clear explanation	М
b		Treble the first equation to get $15x - 3y = 27$ They have the same coefficients of x and y but a different constant so they are parallel lines with no intersections	C1		C1 for clear explanation	
		and so no solutions.	2			
34 a	$x^{2} + 2x - 5 = 6x - 9$ $x^{2} - 4x + 4 = 0$ (x - 2)(x - 2) = 0 x = 2 $y = 6 \times 2 - 9 = 3$ y = 3	x = 2 y = 3	M1 M1 M1 A1 A1	2 3	M1 for equating both equations M1 for arranging to equal 0 M1 for factorising A1 for $x = 2$ cao A1 for $y = 3$ cao	М
b	There is just one intersection of the two graphs, so it has to be sketch iii , as the straight line touches the curve once.		C1 C1 7		C1 for sketch iii C1 for clear explanation	

			1	1		
35 a	Let the cost of a second class stamp be <i>x</i> .		P1	3	P1 for clear explanation of variables chosen	М
	Let the cost of a first class stamp be y.					
	$10x + 6y = 902 \dots(1)$		M1		M1 for first equation created	
	8x + 10y = 1044(2)		M1		M1 for second equation created	
	$5 \times (1)$ $50x + 30y = 4510 \dots (3)$		M1		M1 for multiplying equation in order to be able to	
	$3 \times (2)$ $24x + 30y = 3132 \dots (4)$				eliminate a variable	
	Subtract (4) from (3):		M1		M1 for subtracting	
	26x = 1378				in the oublideling	
	<i>x</i> = 53					
	Substitute for x in (1):		A1		A1 cao	
	$10 \times 53 + 6y = 902$				wit for substituting x into an equation	
	6y = 902 - 530					
	6y = 372					
	y = 62		Δ1		A1 coo	
	So 3 second-class plus 4 first-class will cost				ATCau	
	$3 \times 53 + 4 \times 62 = 407$					
	Cost will be $f4.07$	£4.07				
		24.07	A1		A1 cao	
	Let the cost of a can of cola be c					
a	Let the cost of a chocolate bar be h		P1		P1 for clear explanation of variables chosen	
	Then:					
	6c + 5b = 437 (1)		M1		M1 for first equation created	
	3c + 2b = 200 (2)		M1		M1 for second equation created	
	$2 \times (2) = 6c + 4b = 400$ (3)		M1		M1 for multiplying an equation in order to be able to	
	Subtract (3) from (1):		M1		eliminate a variable M1 for subtracting	
	h = 37		A1		A1 cao	
	v = 57 Substitute for <i>b</i> in (2):					
	$3c \pm 74 = 200$		M1		M1 for substituting b into an equation	
	3c - 126					
	c = 42		A1		A1 cao	
	$c = \frac{1}{2}$					
	cost:					
	2 × 42 + 37 = 121					
	Cost will be £1.21.	£1.21	A1		A1 cao	
			18			

36 a	$S = \frac{5B}{4}$		C1 C1	3	C1 for first equation C1 for second equation	Μ
	$B = \frac{2}{5}C$		C1		C1 for third equation	
	S + C = 75		M1		M1 for creating single equation with one unknown	
	$C = \frac{5}{2}B$					
	$\frac{5}{2}B + \frac{5B}{4} = 75$					
	$\frac{15B}{4} = 75$					
	$B = 75 \times \frac{4}{13}$					
	= 20 S = 1.25 <i>B</i>	$B = \pounds 20$	A1		A1 for £20 cao	
	$S = 1.25 \times 20 = \pounds 25$	S = £25	A1		A1 for £25 cao	
	$C = 75 - 25 = \text{\pounds}50$	C = £50	A1		A1 for £50 cao	
b	The method used was to find equations linking each two persons at a time, and then use those to create one equation that could					
	be solved. Once you had one solution you could find the rest.		C2		C1 for clear explanation. C1 for matching explanation with the work done	
	Answer checked by going back to beginning statements and ensuring each one works.		C1		C1 for clear explanation	
	They do.		10			

37 ai	Draw the graph of $y = x + x^3$.		C2	3	C1 for explanation about drawing a graph	М
	Then solve for $y = 20$.				C F for using it to solve for $y = 20$	
ii	Let the width be x, then the length is $x + 2$.		C2		C1 for showing how equation is created	
	Hence the area is $x(x + 2) = 67.89$.				C1 for explaining there will be a quadratic equation that	
	Solve the quadratic equation to find x .				needs solving	
bi	Create a table of values to assist in drawing					
51	the graph of $y = x + x^3 = 20$.		M1		M1 for creating a suitable table of values	
					5	
	y 0 2 10 30		• •			
	Plot the points and draw the graph.		A1		A1 for at least 4 correct, useful values	
	y ,					
	30		B1		B1 for a good, accurate graph drawn	
	25-					
	20					
	10					
	5-					
	0 1 2 3					
	Follow the line from $y = 20$ to the graph and		M1		M1 for drawing the line $y = 20$	
	Tead down to the x-axis to find $x = 2.6$.	<i>x</i> = 2.6	A1		A1 cao	
	$x^2 + 2x = 67.89$		M1		M1 for setting up initial equation	
Ш	$x^2 + 2x - 67.89 = 0$		M1		M1 for amending it to arrive at equation $= 0$	
	Solve with the formula:					
	$-2 \pm \sqrt{(2^2 - 4 \times 1 \times - 67.89)}$					
	$x = \frac{1 - \sqrt{2}}{2}$		M1		M1 for using the formula	
	2+16.6		A1		A1 for correct intermediate values	
	$x = \frac{-2 \pm 10.0}{2}$ so $x = 7.3$ or -9.3		A1		A1 for picking out 7.3	
	Width x cannot be negative honce solution		C1		C1 for explanation of why this solution was selected	
	is width = 7.3 cm.	Width = 7.3 cm	16			
					1	

38	Area of large square = $7^2 = 49$	B1	2	B1 for area of large square	М
	To find the length (z) of the side of the small square: $z^2 = \sqrt{3^2 + 4^2}$ $z^2 = \sqrt{25}$ $z^2 = 5$ So the area of the small square is 25. Shaded area is equal to area large square – area small square. 49 - 25 = 24 So less than half is shaded, as required.	M1 A1 A1 C2 7	3	M1 for use of Pythagoras' theorem to help find the side length of inner square A1 cao A1 cao A1 for area of shaded part C1 for clear explanation C1 for complete explanation with correct mathematical notation throughout	
39	Set up two simultaneous equations, using the information given. 5 is the first term; from the rule for the sequence, the next term is: $5 \times a - b$, which equals 23 Hence $5a - b = 23$ (1) Doing the same to the next term gives: 23a - b = 113 (2) Subtract (1) from (2) to give: 18a = 90 $a = \frac{90}{18} = 5$ Substitute in (1): 25 - b = 23 b = 2 So $a = 5$, $b = 2$ Hence, the next 2 terms are 563 and 2813.	P1 B1 M1 A1 M1 A1 C1 8	2	 P1 for clear initial explanation B1 for first equation B1 for second equation M1 for clear method of elimination A1 cao M1 for substitution A1 cao C1 for next two terms correctly found 	M

40 a	If the sum of the whole numbers to 50 is 1275 the sum from 2 to be $1275 + 51 - 1 = 1325$.	s from 1 C1 51 will	2	C1 for clear explanation.	М
b	Check method, using simple exa	amples. C1		C1 for clear explanation	
с	Using $S_n = \frac{n(n+1)}{2}$ $S_{52} = \frac{52(52+1)}{2} = 1326$ 1326 - 1 + 1325 as above	C2 re.		C1 for clear use of the formula C1 for showing same answer as above	
d	If 1 is the first term then the <i>n</i> th will be <i>n</i> , so their sum is $1 + n$. Because they come in pairs, the be $\frac{n}{2}$ of these pairs adding to the So the total = $(n + 1) \times \frac{n}{2} = \frac{n(n + 1)}{2}$ formula given.	term C2 ere will he total. $\frac{+1}{2}$, the 6		C1 for clear explanation. C1 for use of the generalization and good mathematical language.	

	1	1	1			
41 a		Ali receives: £1000 + £2000 + + £20 000.		2		М
		This amount, in pounds, is:	C1		C1 for clear explanation	
		1000 × (sum of the numbers 1 to 20) The sum of the first <i>n</i> natural or whole numbers is $\frac{1}{2}n(n + 1)$.	C1		C1 for explaining how the formula for sum of integers helps	
		So the amount Ali receives after <i>n</i> years is:	C1		C1 for explaining the given sum	
		$1000 \times \frac{1}{2}n(n+1) \text{ or } 500n(n+1).$				
b			_			
		The amounts Ben receives each year	C1		C1 for explaining how annual totals are found	
		are £1, £2, £4. The general term is $n-1$				
		$\pounds 2^{\prime\prime}$ '. Adding these amounts gives a				
		running total, in pounds, of: 1, 3, 7,				
		15,				
		Looking for a pattern linking the	C1		C1 for explaining how to look for a pattern	
		number of years with the amount,				
		$3 = 4 - 1 = 2^2 - 1$				
		After 3 years it is:				
		$7 = 8 - 1 = 2^3 - 1$				
		After 4 years it is:				
		$15 = 16 - 1 = 2^4 - 1$				
С		So after <i>n</i> years it is $2^n - 1$.	C1		C1 for showing the pattern building up	
		After 20 years, Ali will have				
		$500 \times 20 \times 19 = £190000$ Ben will have $2^{20} - 1 = £1048575$	C1		C1 for showing how the generalisation is found	
		Ben will have more than five times the amount that Ali has.	C1		C1 for explanation linking both totals with formula found	
			9			

42 a	2n+1	B1	2	B1 cao	М
c	$\frac{2001}{3004}$	B1		B1 cao	
d	No, because $\frac{2n}{3n}$ will always equal $\frac{2}{3}$ no matter what <i>n</i> is, and the denominator increase of 4 will always give a larger increase than the numerator increase of 1, hence the	B1 C1		B1 for no C1 for a clear concise explanation	
	fraction can never be larger than $\frac{2}{3}$.	5			
43 a i	Neither – it's the Fibonacci series, where each term is found by adding the previous two.	B1 C1	2	B1 for neither C1 for clear explanation	М
ii	Geometric – because each term is multiplied by 2 to find the next term.	B1 C1		B1 for geometric C1 for clear explanation	
111	Arithmetic – because to find the next term you add 4 to the previous term.	B1 C1		B1 for arithmetic C1 for clear explanation	
b c	Arithmetic. Arithmetic.	B1 B1 8		B1 for arithmetic B1 for arithmetic	

44 a	<i>a</i> is the first term. <i>d</i> is the amount added each time.	B1 B1	2	C1 for explaining <i>a</i> C1 for explaining <i>d</i>	М
b	For example: use $a = 2$ and $d = 3$ to generate the sequence in part a as: 2, 5, 8, 11, 14, The 5 th term is 14. Using the given $X_n = a + (n - 1)d$: the 5 th term will be $2 + 4 \times 3 = 14$, the same value.	C1 C1 P1		C1 for creating a suitable example C1 for generating a value higher than the third term P1 for showing the X_n formula gives the same value	
c d	$X_n = ar^{n-1}$ It is a quadratic sequence because it contains a term in n^2 .	B1 C1 7		B1 cao C1 cao	
45 a b	Evidence of reproducing proof as given in question. $S_n = \frac{n}{2} (2a + (n - 1)d)$ for the set of integers, $a = 1$ and $d = 1$. Hence $S_n = \frac{n}{2} (2 + (n - 1))$ $= \frac{n}{2} (n + 1)$	C1 C1 C1 P1	2	C1 for correct proof clearly explained C1 for using <i>a</i> and <i>d</i> equal to 1 C1 for correct substitution into the formula P1 for showing how this simplifies to the desired formula	M

46 a		P1	2	P1 for equation showing at least up to ar^3 and the	М
В	$S_n = a + ar + ar^2 + ar^3 \dots + ar^n$	P1	3	P1 for equation showing at least up to ar^4 and the two generalisations	
	$rS_n = ar + ar^2 + ar^3 + ar^4 \dots + ar^n + ar^{n+1}$				
С	S_n a $+ ar$ $+ ar^2$ \dots $+ ar^n$ rS_n ar $+ ar^2$ \dots $+ ar^n$ $+ ar^{n+1}$ $S_n -$ rS_n a $- ar^{n+1}$	C2		C1 for top two rows shown correctly C1 for the bottom row shown correctly	
	Therefore: $S_n - rS_n = a - ar^{n+1}$	B1		B1 cao	
А	$S_n(1-r) = a(1-r^{n+1})$	B1		B1 cao	
	$S_n = \frac{a(1-r^{n+1})}{(1-r)}$	B1		B1 cao	
е					
		7			
47	Considering the area of an $(x + 1)$ by $(x + 1)$ square:	C1	2	C1 for explaining the sides of each square are $(x + 1)$	М
	$\begin{array}{c c} x + 1 & \text{square.} \\ x & 1 \\ \hline x & x^2 & x \\ 1 & x & 1 \\ \hline \end{array}$	C2		C1 for creating the square divided into the rectangles, using the x and the 1 C1 for areas of each rectangle indicated in the rectangles	
	The area of each rectangle created above is shown inside that rectangle, so it can be seen that: $(x + 1)^2 = x^2 + x + x + 1$ $= x^2 + 2x + 1$ as required	C1 4		C1 for clear explanation of required result	

48 a	For example, $2x > 10$	B1	2	B1 for a correct inequality	М
	Divide both sides by 2 to get $x > 5$.	C1		C1 for clear explanation of how to solve the inequality chosen	l.
h		C1		C1 for explanation about circles at the end of each line	
~	We show the solution with a line and a circle at each end point. A solid circle means that the solution includes the end point; an open circle means that the solution does not include	C1		C1 for clear explanation differentiating between solid and open circles	l
	the end point. For example: $x \le 2$ -2 -1 0 1 2 3	P1		P1 for use of a clear diagram to support the explanation	L
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1
	The top diagram shows $x \le 2$. It has a solid circle at the end point $x = 2$ because that is part of the solution.	C1		C1 for a full, clear explanation showing both aspects of the circles	l
c	The bottom diagram shows $x > 1$, it has an open circle at the end point $x = 1$ because $x = 1$ is not part of the solution.				l
·	Starting with an equation $10 - x > 4$ and	C2		C1 for clear explanation	1
	solving by adding x to both sides gives the solution $6 > x$.			C1 for using an example in a way that illustrates the	1
	This can also be given as $x < 6 \dots$ (1)			principie	1
	Consider again $10 - x > 4$.				
	This time multiply throughout by -1 . Keeping the inequality sign the same gives: -10 + x > -4				l
	Add 10 to each side to give $x > 10 - 4$.				1
	This gives the solution as $x > 6$ (2)				
	But comparing this with equation (1) we see that the signs are the other way round, this illustrates that when we				1
	we should have changed the sign from >	8			I

49 a	In this example, x and y are values satisfying the conditions: $x + y \le 5$ $x > 1$ $y > 2$ These are drawn on the diagram.	C1	3 2	C1 for choosing three inequalities that will define a region	Μ
	R	C1		C1 for a clear diagram illustrating the chosen inequalities	
	Any region needs a minimum of three straight lines to enclose it. The region R above is where the solutions satisfying all three inequalities lie.	C1		C1 for clear explanation linking the chosen inequalities with the diagram	
bi	Point (x, y) is inside the region if the point satisfies all three inequalities.	C1		C1 for clear correct explanation	
	For example, $(1.5, 3)$ is inside the region since $1.5 + 3 \le 5$, $1.5 > 1$ and $3 > 2$.	C1		C1 for use of an example to illustrate this	
ii	Point (x, y) is outside the region if it does not satisfy at least one of the inequalities.	C1		C1 for clear correct explanation	
	For example, (2, 4) satisfies two of the conditions ($x > 1$ and $y > 2$) but does not satisfy $x + y \le 5$.	C1		C1 for use of an example to illustrate this	
iii	Point (x,y) is on the boundary of the region if the point satisfies one of the inequalities but only as a equality.	C1		C1 for clear correct explanation	
	For example, (2, 3) is on the boundary of $x + y \le 5$ as $2 + 3 = 5$.	C1 9		C1 for use of an example to illustrate this	

50 a	The total number of games cannot be greater than 4, hence $w + d \le 4$.	C3	3	C1 for explaining $w + d \le 4$	М
	The number of points must be 8 or more, they score 3 for a win, 1 for a draw, hence $3w + d \ge 8$.			C1 for explaining $3w + d \ge 8$	
	The shaded area is the region that satisfies these two inequalities.			C1 for explaining what the shaded region is	
b	In four games, they need to score at least 8 points. The graph shows that to do this they can win at least 3 games or win 2 games and draw two games.	C2		C1 for explaining they need at least 8 points C1 for showing all the possible ways this could happen	
С	The team would still need to score at least 8 points, but now they have five games in which to do it.	C2		C1 for explanation of how this affects both equations C1 for complete solution, clearly showing what the new line(s) are	
	The inequality $w + d \le 4$ would change to $w + d \le 5$. The other inequality is unchanged. The line for $w + d = 4$ would move up to go through (0, 5) and (5, 0). The other line would be				
	unchanged.	7			

51 a	For example, n^2 can generate a quadratic sequence: 1, 4, 9, 16, 25 n^2	C1	2	C1 for a valid quadratic sequence	М
b	Similarities: you find the <i>n</i> th term for both types of sequence by looking at the differences between terms.	C1		C1 for a clear explanation	
	Differences: in a linear sequence you find the first term by subtracting the difference from the second term.	C1		C1 for a clear explanation	
	In a quadratic sequence you also have to look at the second differences. This allows you to extend the differences backwards to find the values of a , b and c in the <i>n</i> th term of $an^2 + bn + c$.				
с	For a linear sequence, just keep on adding 6 each time to give:	C1		C1 for explaining how you woud find the sequence	
	2, 8, 14, 20(6 <i>n</i> – 4)	B1		B1 for cao	
	The <i>n</i> th term includes $6n$ because we add 6 each time, $6n - 4$ because $(2 - 6) = -4$.				
	For a quadratic equation, we build up the series by again having the first differences as 6, then choosing a second difference, say 2. This will give a table such as:	C3		C1 for explaining second differences C1 for use of a table or equivalent C1 for correctly finding a quadratic equation with 2 and 8 as starting terms	
	n1234 n 1234 n th term2816261st difference68102nd difference22				
	Start with the two terms in positions $n = 1$ (2) and $n = 2$ (8) in the sequence.	C2		C1 for explaining how you would find the <i>n</i> th term	
	Put each second difference as 2. Then complete the first differences as shown.				
	Finally the <i>n</i> th terms can be completed				

	as shown.				
	n01234c-2281626 $a+b$ 46810 $2a$ 222Extending the table backwards will allow us to find the values of a, b and c in the nth term $an^2 + bn + c$. $2a = 2 \rightarrow a = 1$ $a + b = 4 \rightarrow b = 3$ $c = -2$ Hence nth term is $n^2 + 3n - 2$.	10		C1 for correctly finding the <i>n</i> th term	
52	$(m^{2} - n^{2})^{2} + (2mn)^{2} =$ $m^{4} - 2m^{2}n^{2} + n^{4} + 4m^{2}n^{2}$ $= m^{4} + 2m^{2}n^{2} + n^{4}$	M1 A1 A1	2 3	M1 choosing two smallest terms, squaring and adding A1 for cao A1 for cao	Μ
	$=(m^2 + n^2)^2$	C1 4		C1 for showing the factorisation leads to the given result	
53	Because the differences between consecutive terms are 2, 3, 4, 5, 6, etc. (even and odd alternately); when generating the triangular number sequence starting with the odd 1, add even to odd to generate odd3; add odd to odd to generate even6; add even to even to generate even10. Add odd to even to generate odd15. We are now back again where we add even to odd to generate odd, and the whole sequence continues in the same way, continually giving two odd, two even, etc.	C3 3	2	C1 for explaining the about the differences of the terms being the set of integers C1 for explaining the pattern is odd, even, odd, even and so on C1 for explaining the complete sequence of combining odd and even to generate the final sequence	Μ

54	The assumption is that p and q a integers. 10p + q = 7n where n is also an	integer. C1 M1	2	P1 for giving the assumption about p and q C1 for expressing $10p + q$ as a multiple of 7 M1 for expressing $3p + q$ in terms of $10p + q$	М
	7p + 3p + q = 7n $3p + q = 7n - 7p$ $= 7(n - p)$	A1		A1 for similar expression	
	As <i>n</i> and <i>p</i> are integers then $n - a$ also an integer hence $7(n - p)$ is multiple of 7 and so $3p + q$ must well.	p is a be as C1 5		C1 for clear full explanation	
55	2(5(x-2) + y) = 2(5x - 10 + y) = 10x - 20 + 2y 10(x - 1) + 2y - 10 = 10x - 10 + = 10x - 20 + 2 Equation (1) = equation (2) Hence the two expressions are of	M1 A1 2y - 10 A1 2y(2) equal. P1	2	M1 for expanding A1 cao M1 for expanding A1 cao P1 for explaining the two expressions are the same	М
		5			

56 a		Take two numbers x and y where $x > y$.	C1	2	C1 for initial explanation	М
		First step: $5(x - 2) = 5x - 10$	B1		B1 cao	
		Second step: $2(5x - 10 + y)$	B1		B1 cao	
		= 10x - 20 + 2y	B1		B1 cao	
		Third step: $10x - 20 + 2y + 9 - y$				
		= 10x - 11 + y	B1		B1 cao	
		Fourth step: $10x - 11 + y + 11 = 10x + y$	P1		P1 for explanation of how this shows the final result	
	Hence where the first two numbers might have been 7 and 3, the final outcome would be $70 + 3 = 73$.					
b		Let the single-digit number be x and the two-digit number be $10a + b$.	C1		C1 for defining each digit	
	First step: $10(10a + b) - 9x = 100a + 10b - 9x$ = $100a + 10b + x - 10x$	First step: $10(10a + b) - 9x = 100a + 10b - 9x$	D1		P1 for expressing the first manipulation algebraically	
		= 100a + 10b + x - 10x	P1			
		= 100a + 10b - 10x + x				
		= 100a + 10(b - x) + x	C1		C1 for showing it in terms of hundreds, tens and units	
		The hundreds unit is <i>a</i> .	C1		C1 for correct hundreds	
		The tens unit is $(b - x)$.	C1		C1 for correct tens	
		The units term is <i>x</i> , the same as the	C1		C1 for correct unit explanation	
		The split then becomes $10a + (b - x)$ and x.	P1		P1 for clear explanation as to how the second manipulation gives the two-digit term	
		Adding these two gives $10a + b - x + x$				
		which is $10a + b$, the two-digit term.				
			13			
57		Expand each square and add:	M1	2	M1 for expanding brackets	М
		$n^2 - 2n + 1 + n^2 + n^2 + 2n + 1$	AI			
		$= 3n^2 + 2n - 2n + 2$	C1		C1 for showing how the <i>n</i> terms cancel	
		$= 3n^2 + 2$ as given.	C1		C1 for complete solution with no incorrect notation or terminology	
			4			

58	The difference is 5 so <i>n</i> th term is $5n + c$	C1	2	C1 for obtaining the difference of 5	М
	where $c = \text{first term} - 5$				
	= 4 - 5 = -1	M1 A1		M1 for finding <i>c</i> A1 cao	
	So <i>n</i> th term is $5n - 1$.	۸1		A1 c20	
	Check the 4 th term gives 19.	AI		AT Cau	
	When $n = 4$, $4n - 1 = 20 - 1 = 19$, correct.				
		C1		C1 for showing a check works	
59	Triangular numbers are 1, 3, 6, 10, 15	B1	2	B1 for showing triangular numbers	М
	This will give a table as: n 1 2 3 4 nth term 1 3 6 10 1st diffnce 2 3 4 2nd diffnce 1 1 1 Extending the table backwards will allow us to find the values of a, b and c in the nth term $an^2 + bn + c$. n 0 1 2 3 4 c 0 1 2 3 4 $2a$ 1 1 1 1 1	M1 A1 C1 M1 A1	3	M1 for method of finding differences A1 for correct table C1 for explanation of extending table backwards M1 for method of extending table A1 for correct table	
	$2a = 1 \rightarrow a = \frac{1}{2}$ $a + b = 1 \rightarrow b = \frac{1}{2}$ $c = 0$ Hence <i>n</i> th term is $\frac{1}{2}n^2 + \frac{1}{2}n = \frac{1}{2}(n^2 + n)$	B1 B1 B1		B1 correct <i>a</i> B1 correct <i>b</i> B1 correct <i>c</i>	
	$= \frac{1}{2}n(n+1)$	P1		P1 for correct evaluation of generalisation to show given result	

60	$T_n = \frac{1}{2}n(n+1)$	B1	2	B1 for correct T _n formula	М
	$T_{2n+1} = \frac{1}{2}(2n+1)(2n+1+1)$	M1		M1 for substituting $2n + 1$	
	$=\frac{1}{2}(2n+1)(2n+2)$				
	$=\frac{1}{2}(2n+1)(n+1)$				
	$= 2n^2 + 3n + 1$ (1)	A1		A1 cao	
	$T_{n+1} = \frac{1}{2}(n+1)(n+1+1)$	M1		M1 for substituting $n + 1$	
	$=\frac{1}{2}(n+1)(n+2)$	A1		A1 cao	
	$= \frac{1}{2}(n^2 + 3n + 2) \dots (2)$	B1		B1 for subtracting each equation	
	So $T_{2n+1} - T_{n+1}$				
	$= 2n^2 + 3n + 1 - \frac{1}{2}n^2 - \frac{3}{2}n - 1$	P1		P1 for clear full explanation of proving the final	
	$=\frac{3}{2}n^2+\frac{3}{2}n$	7		connection	
61	$T_n = \frac{3}{2}n(n^2+1)$	B1	2	B1 for T _n formula	М
	$\frac{T_n - 1}{T_n} = \frac{\frac{1}{2}n(n+1) - 1}{\frac{1}{2}n(n+1)}$	C3		C1 for numerator expansion C1 for denominator expansion C1 for cancelling $\frac{1}{2}$	
	$=\frac{\frac{1}{2}(n^{2}+n-2)}{\frac{1}{2}n(n+1)}=\frac{(n^{2}+n-2)}{n(n+1)}$				
	But $n^2 + n - 2$ factorises to				
	(n-1)(n+2)				
	So final expression is $\frac{(n-1)(n+2)}{n(n+1)}$	B1 P1		B1 for correct factorisation P1 for fully clear correct proof with no mathematical	
				notational errors	
		6			

62	Let the first number be x, then the next four are $x + 1$, $x + 2$, $x + 3$ and $x + 4$. The sum of these is $5x + 1 + 2 + 3 + 4$ which is $5x + 10 = 5(x + 2)$, a multiple of 5.	P1 M1 P1	2	P1 for stating each term in algebraic form M1 for adding all 5 terms P1 for showing they are multiple of 5	Μ
		3			
63	$10^{x} = \frac{a}{b}$ Hence $b \times 10^{x} = a$ Substitute this into $10^{y} = \frac{b}{a}$ to give $10^{y} = \frac{b}{(b \times 10^{x})}$ Hence $10^{y} = \frac{1}{10^{x}}$ So $10^{y} \times 10^{x} = 1$ So $10^{(x+y)} = 1$ But $10^{0} = 1$ And so $x + y = 0$.	P1 M1 C1 C1 C1 C1 B1 P1 7	2	P1 for expressing <i>a</i> as subject M1 for substituting into other expression C1 for showing the correct substitution C1 for showing the product of the two terms equal to 1 C1 for showing combination of indices B1 for $10^0 = 1$ P1 for complete, clear proof with clear mathematical statements	Μ

64	Where two terms are x and $x + 1$	P1	2	P1 for identifying the two terms	М
	$(x + x + 1)^{2} - (x^{2} + (x + 1)^{2})$ $= (2x + 1)^{2} - (x^{2} + x^{2} + 2x + 1)$ $= 4x^{2} + 4x + 1 - 2x^{2} - 2x - 1$ $= 2x^{2} + 2x$ $= 2x(x + 1) \dots (1)$ Where T _x = $\frac{1}{2}x(x + 1)$ 4T _x = $2x(x + 1)$, which is same as the result in equation (1).	C1 C1 C1 C1 P1		C1 for correct expression as asked C1 for correct expansion of all brackets C1 for correct simplification C1 for correct factorisation P1 for clear complete proof with correct mathematical notation	
65	let n = r	0	2		M
05	Then $q = x + 1$ and $r = x + 2$ so $pr = x(x + 2)$ $= x^2 + 2x$ $q^2 - 1 = (x + 1)^2 - 1$ $= x^2 + 2x + 1 - 1$ $= x^2 + 2x = pr$	B1 B1 B1 B1 B1 P1 6	2	B1 for <i>q</i> expressed algebraically B1 for <i>r</i> expressed algebraically B1 for product <i>pr</i> expressed algebraically B1 for $q^2 - 1$ expressed algebraically B1 for simplification P1 for complete clear proof	IVI
66 a	There are many equivalent	B1	2	B1 for a correct example	Н
bi	expressions. For example, expand the bracketed term: $\frac{z}{2} - q^2 - q - 4$	B1	3	B1 for a correct example	
ii	For example: $\frac{(6x+4y)}{42}$	B1		B1 for a correct example	
	For example: $4x^2 + 10x$	3			
67 a	To make it a product of two linear expressions.	C1	2 3	C1 for clear explanation	Н
b	The quadratic expression.	C1		C1 for clear explanation	
с	That the signs of the numbers in the brackets are different.	C1		C1 for clear explanation	
d	One factor of the constant term is zero. There is only one set of brackets.	C1		C1 for clear explanation	
		4			

68 a	For example: $x^2 - 1$. Because each part is a square, x^2 and 1 ² , one is subtracted from the other.	C1	3	C1 for clear explanation	Н
b	Because: 1000 × 998 = (999 + 1) × (999 - 1) = 999 ² - 1	C1		C1 for clear explanation	
		2			
69	Two that can be cancelled, for example: 2r = 5(r+1)	B1	2 3	B1 for two examples that cancel	
	$\frac{2x}{x}$ and $\frac{0(x+1)}{10(x+1)}$				
	I chose two straightforward ones, one that would cancel by a single letter and one that would cancel by an algebraic term.	C1		C1 for a clear explanation	
	Two that cannot be cancelled, for example:	B1		B1 for two examples that don't cancel	
	$\frac{x}{3}$ and $\frac{x^2}{x+1}$ I chose two straightforward examples, one being a single term as numerator and denominator, the other one where the denominator was more than a single term.	C1		C1 for a clear explanation	
70	 To get such a term on the top this must	C1	2	C1 for clear explanation	Н
	be the difference of two squares, hence the two expressions both need multiplying by $(3x - 4)$ to give: $\frac{(3x+4)(3x-4)}{(x+2)(3x-4)}$	B1 C1		B1 for $(3x - 4)$ C1 for setting up the expression	
	This expands to: $\frac{9x^2 - 16}{3x^2 + 2x - 8}$	P1		P1 for showing how to find the final expression in suitable format	
		4			

71	$(2a + b)(2a + b) = 4a^{2} + 4ab + b^{2}$ $(2a + b)(2a - b) = 4a^{2} - b^{2}$ $(2a - b)(2a - b) = 4a^{2} - 4ab + b^{2}$	C1	2	C1 for showing all the possibilities	Н
	(a + b)(a + b) = a2 + 2ab + b2 (a + b)(a - b) = a ² - b ² (a - b)(a - b) = a ² - 2ab + b ²	C1		C1 for showing all the possibilities	
	The difference in the two is that in the $(2a \pm b)$ product, both the a^2 and ab terms have a coefficient of 4 (when the ab term is not zero), but in the $(a \pm b)$ product, the a^2 term has a coefficient of 1 and the ab term has a coefficient of 2	C1		C1 for clear explanation	
	(when the <i>ab</i> term is not zero).	3			

72 a	Draw a triangle ABC.		2		н
	c h	C1		C1 for drawing diagram correctly labelled	
	functions: $\sin C = \frac{h}{h}$	C1		C1 for trigonometric expression linking C, h and b	
	Therefore: $h = b \sin C$	C1		C1 for $h = b \sin C$	
	for area of a triangle:				
	Area = $\frac{1}{2}a \times h$ Substituting for <i>h</i> gives:	B1 M1		B1 formula for area of triangle M1 substitution of <i>h</i>	
	Area = $\frac{1}{2}a \times b \sin C$	A1		A1 cao	
	Area = $\frac{1}{2}ab\sin C$ as required.	P1		P1 for complete correct proof with correct mathematical notation throughout	
b	Using the given triangle:				
	$C = 45^{\circ}, a = x + 2 = 6, b = x - 2 = 2$ Area = $\frac{1}{2}ab\sin C$	P1		P1 for expressing <i>a</i> , <i>b</i> and <i>C</i>	
	$=\frac{1}{2}\times 6\times 2\times \sin 45^{\circ}$	M1		M1 for substituting for a, b and C	
	$= 6 \times \frac{1}{\sqrt{2}}$				
	$=\frac{6}{\sqrt{2}}$	A1		A1 cao	
	Multiply numerator and denominator by $\sqrt{2}$	M1 P1		M1 for dealing with the $\sqrt{2}$ in denominator	
	This gives $\frac{6 \times \sqrt{2}}{6 \times \sqrt{2}}$			i i ioriun explanation showing given result	
	$\frac{1}{\sqrt{2}} \times \sqrt{2} = \frac{1}{\sqrt{2}} \times \sqrt{2}$				
	$= 3\sqrt{2}$ as required.	12			

73	f(x) = 3 - 7x Find f ⁻¹ (x) from y = 3 - 7x: 7x = 3 - y x = $\frac{3 - y}{7}$	M1	2	M1 for method of finding inverse	Н
	So $f^{-1}(x) = \frac{3-x}{7}$	A1		A1 cao	
	Find $g^{-1}(x)$ from $y = 7x + 3$: 7x = y - 3 $x = \frac{y - 3}{7}$	M1		M1 for method of finding inverse	
	So $g^{-1}(x) = \frac{x-3}{7}$ So $f^{-1}(x) + g^{-1}(x) = \frac{3-x}{7} + \frac{x-3}{7}$	A1		A1 cao	
	$= \frac{3-x+x-3}{7} = \frac{0}{7}$ $= 0 \text{ as required.}$	P1 C1		P1 for showing how the two functions can be added together C1 for complete explanation of how they sum to 0	
		6			

74 ai	It means that the constant terms in both expressions are positive, or if on is positive and one is negative, their sum is positive.	P1 P1 P1	2	P1 for first condition P1 for second condition	Н
ii	It means that the constant terms in both expressions are negative, or if or is positive and one is negative their sum is negative.	P1 ne P1		P1 for first condition P1 for second condition	
iii	The expression is the difference of tw squares.	ro C1		C1 for clear explanation	
bi	For example, $(4x + 2)(x - 1)$ = $4x^2 - 2x - 2$ as required.	C1		C1 for correct example explained	
ii	For example, $(3x + 1)(x + 1) = 3x^2 + 4x + 1$ as required.	C1		C1 for correct example explained	
C	If it is positive then both expressions have the same sign. If it is negative then the expressions have different signs.	C1		C1 for complete clear explanation	

75 a	$\left(\frac{5}{2}\right)^2 = \frac{25}{4}$	M1 A1	2	M1 for squaring half of 5 A1 cao	Н
b	$2x^2 + 10x - 5 = 0$ Divide through by 2:				
	$x^2 + 5x - \frac{5}{2} = 0$	M1		M1 correctly simplifying equation	
	Completing the square: $(r + \frac{5}{2})^2 - \frac{5}{2} - \frac{25}{2} = 0$	M1 A1		M1 completing the square A1 cao	
	$(x + \frac{5}{2})^2 = \frac{(10+25)}{2} = \frac{35}{2}$				
	Taking the square root of each side:				
	$x + \frac{5}{2} = \frac{\pm\sqrt{35}}{2} = \pm 2.958$				
	$ \begin{array}{l} x = 2.958 - 2.5 & \text{or } x = -2.958 - 2.5 \\ x = 0.458 & \text{or } x = -5.458 \end{array} $	A1 C1		A1 for 2.958 (3 dp or more) C1 for showing the two possible solutions	
	Consider the 4 lines of his working.	C1		C1 for two correct solutions (3 dp or more)	
С	equation.	B1		B1 for line 1 comments	
	Line 2: he has squared the right-hand side incorrectly.	B1		B1 for line 2 comments	
	Line 3: the $\frac{5}{2}$ should be $\frac{-5}{2}$ and the	D4			
	$5\sqrt{2}$ should be $\frac{\pm\sqrt{45}}{2}$	BI		Bit for line 3 comments	
	Line 4: there should be two solutions.	B1		B1 for line 4 comments	
d	$x^{2} + 5x - 5 = 0$ $(x + \frac{5}{2})^{2} - 5 = (\frac{5}{2})^{2}$ Don't forget the -5				
	in the original equation. $(r + \frac{5}{2})^2 - 5 - \frac{25}{2}$ Square the whole of				
	the bracket on the right-hand side. $(x + \frac{5}{2})^2 = 5 + \frac{25}{4}$ Remember, when				
	you add a term on one side, you must also add it on the other side.				
	$(x + \frac{5}{2}) = \pm \sqrt{\frac{45}{4}} = \pm \frac{\sqrt{45}}{2}$				
	Be careful when taking square roots of fractions. Don't forget that when you find square root there is a positive and a negative root.	C2		C1 for commenting on each line C1 for clear positive comments that would be deemed heloful	
		14			
					-

76 a	If the coefficient of x^2 is positive, the turning point is between the two roots, so choose an equation with two positive <i>x</i> roots, say $x = 1$ and $x = 3$. The quadratic that has these roots is y = (x - 1)(x - 3), which is $y = x^2 - 4x + 3$. Complete the square to get $y = (x - 2)^2$ $- 2^2 + 3$. Hence the turning point of $y = (x - 2)^2 - 1$ will have a positive <i>x</i> -value.	C1 P1	2	C1 for clear explanation of what equation to look for. P1 for choosing a suitable equation with these characteristics.	H
b	If the equation has no roots, then the turning point will be above the <i>x</i> -axis, hence a positive value of <i>y</i> . From the general form of the quadratic equation, $y = ax^2 + bx + c$, the value of b^2 is less than $4ac$ so, keeping <i>a</i> as 1, we could choose <i>c</i> as 6 and <i>b</i> as 2, giving $y = x^2 + 2x + 6$ Complete the square to get $y = (x + 1)^2 - 1 + 6$. Hence the turning point of $y = (x + 1)^2 + 5$ will have a positive y value.	C1 C1 P1		C1 for a suitable equation with complete justification C1 for clear explanation of what equation to look for. P1 for choosing a suitable equation with these characteristics.	
c	The <i>y</i> -intercept will be positive if <i>y</i> is positive when $x = 0$. for example: $y = (x + 2)^2 + 3$, when $x = 0$ $y = 7$, positive so $y = (x + 2)^2 + 3$ has a <i>y</i> - intercept that is positive.	C1 P1 7		C1 for a suitable equation with complete justification P1 for complete clear explanation	

77 a	A ta	ble of	values	s for t	he gra	ıph wil	l be:	C1 2		C1 for finding suitable points to assist sketch the graph	Н
	x	-3	-2	-1	0	1	2		3		
	у	8.25	4.25	2.25	2.25	4.25	8.25				
				<i>y</i>	•			C1		C1 for a suitable sketch of the graph	
				10- 8- 6- 4-			/				
	_3	-2		0)	1	2				
b	f(x + dow	- 3) – 2 n of f(2 is a t (x). The	transla erefor	ation 3 e, as t	3 left a the tur	nd 2 ming	C1		C1 for explaining how the function will change the graph	
	poir the poir	nt mov <i>x-</i> axis nt (–3.	és 2 d , givinç 5, 0).	own, g one	it will r real ro	now tu pot at	irn on the	C1		C1 for explanation about turning point being now on the <i>x</i> -axis	
								4			