Guidance on the	Buidance on the use of codes for this mark scheme					
М	Method mark					
А	Accuracy mark					
В	Working mark					
сао	Correct answer only					
oe	Or equivalent					
ft	Follow through					

Question	Working	Answer	Mark	AO	Notes	Grade
1 a		False. Experimental probability relies on real life and varies according to the number of trials carried out. You can get a different probability from two different sets of trials.	B1	2	B1 for definition plus explanation oe	М
b		True. The more trials, the closer you get to the theoretical probability.	B1		B1 for explanation oe	
C		False. Relative frequency is frequency of desired outcome total number of trials This is different from the theoretical probability, which is <u>number of ways the outcome can happen</u> total number of all possible outcomes Relative frequency is dependent upon the number of trials.	B1		B1 for definition plus explanation oe	
2		The frequency is approximately the same	3	2	P1 for evolution	NA
2		for each region of the spinner, suggesting that the spinner is likely to be fair. There are no obvious anomalous results to indicate bias, so there is no strong evidence to suggest it is not fair.	1	2	BT for explanation	
3	Joy wins: $0.65 \times 52 = 33.8$ which is approximately 34 wins. Vicky won 10 times. Joy + Vicky = 44 wins Max = 52 - 44 = 8 wins	8 times	A1 2	2 3	M1 for multiplication to find the number of Vicky's wins A1 cao	M

4 a		Anna, Ben Anna, Chloe Anna, Clara Anna, Ciaran Anna, Daniel Ben, Chloe Ben, Clara Ben, Ciaran Ben, Daniel Chloe, Clara Chloe, Ciaran Chloe, Daniel Clara, Ciaran Clara, Daniel Ciaran, Daniel	M1	3	M1 for being methodical	Μ
b i	P(Anna, Chloe)+ P(Anna, Clara) + P(Chloe, Clara)	$\frac{3}{15} = \frac{1}{5}$	M1 A1		M1 for addition of fractions A1 for simplification	
ii	P(Ben, Ciaran) + P(Ben, Daniel) + P(Ciaran , Daniel)	$\frac{3}{15} = \frac{1}{5}$	M1		M1 for addition of fractions	
iii	P(Chloe, Clara) + P(Chloe, Ciaran) + P(Clara, Ciaran)	$\frac{3}{15} = \frac{1}{5}$	M1		M1 for addition of fractions	
iv	$1 - \frac{3}{15} = \frac{12}{15} = \frac{4}{5}$	$\frac{12}{15} = \frac{4}{5}$				
		No need to find all the pairs with different initials because it 1 minus the probability that all the pairs have the same initials.	M1 A1		M1 for subtraction from 1 oe A1 for explanation with method	
C İ		Mutually exclusive as cannot select the same person twice.	B1		B1 for mutually exclusive with correct explanation oe	
ii		Mutually exclusive as 'two men' cannot include a man and a women, and vice versa.	B1		B1 for mutually exclusive with correct explanation oe	
iii		Mutually exclusive as no two men have the same initial.	B1		B1 for mutually exclusive with correct explanation oe	

iv		Not mutually exclusive as there are possible combinations where two women have the same initial, such as Chloe and Clara.	B1	B1 for mutually exclusive with correct explanation oe	
d	P(exhaustive outcomes) = 1 P(same sex) + P (not the same sex) = P(F, F) + P(M, M) + P(M, F) = 1 OR P(two women) = P(A, Ch) + P(A, Cl) +P(Ch, Cl) = $\frac{3}{15}$ P(two men)= P(B, Ci) + P(C, D) + P(Ci, D) = $\frac{3}{15}$ P(opposite sex) = P(A, B) + P(A, Ci) + P(A, D) + P(B, Ch)+ P(B, Cl) + P(Ch, Ci) + P(Ch, D) + P(Cl, Ci) + P(Cl, D) = $\frac{9}{15}$ $\frac{3}{15} + \frac{3}{15} + \frac{9}{15} = \frac{15}{15}$	Picking two people of the same sex and picking two people of opposite sex. This is mutually exclusive and mutually exhaustive because the total probabilities add up to 1.	B1 M1	B1 for mutually exclusive with correct explanation oe M1 for full demonstration of exhaustive outcomes to support argument oe	
			13		

5 a		Probabilities on all the branches at each split must sum to 1 because they are	B3	2 3	B1 for explanation that includes mutually exclusive events	М
		mutually exhaustive and exclusive (an			B1 for explanation that includes independent events	
		happens until all possible outcomes are			B1 for clear, complete explanation	
		accounted for).				
		the same denominator if they are				
		denominator may change if they are				
		dependent (without replacement). Final probabilities must sum to 1 because all possible outcomes have been considered.				
b		The probabilities on all the branches at each split must sum to 1 because they are exhaustive and must describe all possible outcomes for that event.	B1		B1 for clear explanation of exhaustive events	
с		Denominators for the same event at different stages will be different if the question specifies 'without replacement', for example, when choosing counters without replacement, there are fewer counters to choose from after each choice.	B1		B1 for clear explanation of dependent events	
d		Check each set of branches sum to 1. Check whether choices are made with or without replacement. Make sure you know when to add P(A) and P(B) and when to multiply. Check that sum of the final probabilities after multiplication along the branches is 1.	B1		B1 for at least three checks that include final probabilities sum to 1 oe	
		0.40	6			
0	$P(rain, not rain) + P(not rain, rain) = 0.25 \times 0.52 + 0.75 \times 0.48$	0.49	M1 A1	3	M1 for multiplication of rain and complement	M
	= 0.49		2			

					•	
7 a	1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12	$P(1, 1) = \frac{1}{36}$	M1 A1	3	M1 for correct calculation cao A1 for good use of diagram such as two-way table to support explanations	M
b		He can expect to win one in 36 times so should expect to have 36 goes to win at least once.	B1		B1 for correct interpretation of 36 outcomes, of which only one wins	
c	100 ÷ 36 = 2.7	If he has 100 goes, then he can expect 3 wins.	M1 4		M1 for division, rounding and correct interpretation in context	
8 a		P(B, B) = $\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$ P(R, B) = 1 - (P(B, B) + P(R, R)) = 1 - ($\frac{4}{9} + \frac{1}{9}$) = $\frac{4}{9}$ as required. Blue Red Red Red	M1 M1	3	M1 for multiplication of $\frac{2}{3} \times \frac{2}{3}$ and subtraction from 1 M1 for use of technical notation and possible use of tree diagram to aid explanation	M

	р С	$P(G) = g$ $P(Y) = y$ We want $g^2 = gy \times gy$ If you assume any value where $g = 2y$ then $g^2 = (2y)^2 = 4y^2$ $gy \times gy = 2y^2 \times 2y^2 = 4y^2$ So the probabilities will be the same, as required.	No, the probabilities are not the same because: $P(Y, Y) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$ $P(G, G) = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$ $P(Y, G) = 1 - (P(Y, Y) + P(G, G))$ $= 1 - \frac{10}{16} = \frac{6}{16} = \frac{3}{8}$ So the probability of scoring green twice is not the same as the probability of scoring yellow and green in this case. Any spinner with twice as many greens as yellows, such as one divided into six equal sections, with two yellow and four greens in any position. $P(Y) = \frac{2}{6}; P(Y, Y) = \frac{4}{36}$ $P(G) = \frac{4}{6}; P(G, G) = \frac{16}{36}$ $P(Y, G) = 1 - P(Y, Y) + P(G, G)$ $= 1 - \frac{20}{36} = \frac{16}{36}$ So P(G, G) = P(Y, G) $\overrightarrow{Y} = \overrightarrow{G} = \overrightarrow{G}$	A1 B1 M1 B1 B1 B1		A1 for multiplication leading to correct probabilities cao B1 for use of correct probabilities to compare and justify 'no' answer M1 for use of technical notation and possible use of tree diagram to aid explanation. M1 for spinner as described. Can be any shape provided sections are equal and it will spin around a central axis (eg, circle, regular hexagon) B1 for example B1 for general explanation	
--	--------	---	--	----------------------------------	--	---	--

9 a		0.4 Pass 0.5 Pass practical PP $0.4 \times 0.5 = 0.2$ 0.4 Pass 0.5 Fail practical PF $0.4 \times 0.5 = 0.2$ Pass practical PF $0.4 \times 0.5 = 0.2$ Pass practical FP $0.6 \times 0.5 = 0.3$ Fail practical FF $0.6 \times 0.5 = 0.3$	M1 A1	3	M1 for correct construction of probability tree diagram A1 for probabilities and events identified clearly	М
b	$P(P, P) = 0.4 \times 0.5 = 0.2$	0.2	A1 3		A1 cao	
10	$P(6, 7 \text{ or } 8) = \frac{12}{52} \times \frac{11}{51}$ $= \frac{11}{221} = 0.049 77$	0.050	M1 A1 2	2	M1 for multiplication showing probabilities for two draws without replacement A1 cao	М
11		P(land on 1) = P(1, 2, 3 or 4) = $\frac{4}{6} = \frac{2}{3}$ P(land on -1) = P(5 or 6) = $\frac{2}{6} = \frac{1}{3}$ Since $\frac{2}{3} = 2 \times \frac{1}{3}$, the counter is twice as likely to land on 1 as -1. OR There are twice as many possibilities for the dice to land on 1, 2, 3 or 4 than on 5 or 6 with a fair die.	M1 A1 2	2 3	M1 for multiplications to calculate P(1) and P(-1) A1 for explanation that there are twice as many chances oe OR A1 for communicating that one probability is twice the other oe	М

12	$P(A \text{ and } B) = P(A) \times P(B) \text{ NOT } P(A) + P(B)$	$P(5) = \frac{1}{6}$	M1 A1		M1 for use of probability notation A1 for explanation that shows an understanding of the	М
	or P(A) \times P(B) means P(A) and P(B) P(A) + P(B) means P(A) or P(B)	$P(H) = \frac{1}{2}$	A1		Al for further explanation, example oe	
		P(5 and H) = $\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$				
		P (5 or H) = $\frac{1}{6} + \frac{1}{2} = \frac{2}{12} + \frac{6}{12}$				
		$=\frac{8}{12}$				
		$\frac{1}{12} \neq \frac{8}{12}$				
			3	-		
13	P(pass, pass) = 0.9 × 0.6 = 0.54	0.6 Pass practical PP 0.54	M1 A1	2	M1 for correct construction of probability tree diagram A1 for probabilities and events identified clearly	М
		0.9 theory 0.4 Fail practical PF 0.36				
		0.1 Fail theory				
		0.4 Fail practical FF 0.04				
		The probability that she passes both parts on the first attempt is 0.54				
			A1 3		A1 cao	

14 a	P(late) = 0.08		B1	2	B1 for correct multiplication for three different events oe	М
	P(not late) = 0.92 P(early) = 0.02					
	P(not early) = 0.98					
	P(raining) = 0.3					
	P(not raining) = 0.7 P(on time) = 1 – P(late) – P(early)					
	= 1 - 0.08 - 0.02					
	= 0.9					
	$P(\text{on time, not raining}) = 0.9 \times 0.7 = 0.63$	P(on time, not raining) = 0.63				
b	P(raining, raining, raining) = 0.3 ³ =0.027	P(raining, raining, raining) = 0.027	B1		B1 for correct multiplication for three same events oe	
с	P(not late five days in a row) = 0.92^5					
	= 0.6591	P(not late five days in a row) = 0.659				
			B1		B1 for correct multiplication for five same complement events oe	
			3			
15	Let the number of students in the class	The number of students who took the	3 M1	2	M1 for either solving the linear equation or calculating,	н
15	Let the number of students in the class be <i>x</i> .	The number of students who took the exam is 40.	3 M1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram	Н
15	Let the number of students in the class be x . Number who solve problem 1 = 0.5 x	The number of students who took the exam is 40.	3 M1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram	Н
15	Let the number of students in the class be x. Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So x is the two added together loss 12 as	The number of students who took the exam is 40.	3 M1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram	Н
15	Let the number of students in the class be <i>x</i> . Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So <i>x</i> is the two added together less 12 as this has been counted twice	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	Н
15	Let the number of students in the class be <i>x</i> . Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So <i>x</i> is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	Н
15	Let the number of students in the class be <i>x</i> . Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So <i>x</i> is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	н
15	Let the number of students in the class be <i>x</i> . Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So <i>x</i> is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x x = 40	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	Н
15	Let the number of students in the class be x. Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So x is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x x = 40 or	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	Н
15	Let the number of students in the class be x. Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So x is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x x = 40 or 80% + 50% = 130% so 12 represents the overcount by 30%.	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	Н
15	Let the number of students in the class be x. Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So x is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x x = 40 or 80% + 50% = 130% so 12 represents the overcount by 30%. 30x = 12	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	H
15	Let the number of students in the class be x. Number who solve problem $1 = 0.5x$ Number who solve problem $2 = 0.8x$ So x is the two added together less 12 as this has been counted twice x = 0.8x + 0.5x - 12 x = 1.3x - 12 12 = 0.3x x = 40 or 80% + 50% = 130% so 12 represents the overcount by 30%. $\frac{30x}{100} = 12$	The number of students who took the exam is 40.	3 M1 A1	2	M1 for either solving the linear equation or calculating, using the percentages from the Venn diagram A1 for explanation as to why 12 is subtracted (or we have 30% too much)	H

16 a	x = 0.7x + 30 - 0.3x x - 0.7x + 0.3x = 30 0.6x = 30 x = 50	Brown hair Glasses 0.4x $0.3x$ 30	M1	3	M1 for equation set up	Н
b		x = 50 Own problem	A1 B1 B1		A1 cao B1 for clear, organised problem B1 for relevant mark scheme	
17		You cannot use a sample space diagram because it is a two-way diagram, it is two- dimensional (horizontal and vertical) and it is impossible to draw the third and fourth dimensions. Also a probability tree diagram would be very complex.	B1 B1	3	B1 for explanation of the fact that a two-way table describes two events only oe B1 for comment on the complexity or impracticality of a tree diagram	H

18 a	Example of a problem that can be solved by adding probabilities.	B1	3	B1 for clearly structured question, for example: E.g. A bag contains 3 red, 2 yellow and 4 blue counters. One is drawn and replaced. A second is drawn. What is the probability of a red first or a blue first? $P(R \text{ first}) + P (B \text{ first}) = \frac{3}{9} + \frac{4}{9} = \frac{7}{9}$	Н
b c	Example of a problem that can be solved by multiplying probabilities. Example of a problem that involves both adding and multiplying probabilities.	B1 B1		B1 for clearly structured question, for example: What is the probability of drawing two yellows, replacing the counter each time? $P(YY) = P(Y) \times P(Y) = \frac{2}{9} \times \frac{2}{9} = \frac{4}{81}$ B1 for clearly structured question, for example: What is the probability of drawing two counters the same colour, replacing the counter each time? P(Y, Y) + P(B, B) + P(R, R)	
		3		$= (\frac{2}{9} \times \frac{2}{9}) + (\frac{4}{9} \times \frac{4}{9}) + (\frac{3}{9} \times \frac{3}{9})$ $= \frac{29}{81}$	

19 a	$\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} = \frac{1}{120}$	$P(win) = \frac{1}{120}$	M1	2 3	M1 for multiplication of three probabilities without replacement	Н
b	$\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} = \frac{1}{120}$	He is incorrect; every set of three numbers has the same chance of being chosen.	A1		A1 for explanation that all numbers have the same chance of being drawn	
с	The number of 'plays' in a year is 45 × 50 = 2250.		M1		M1 for multiplication 45 × 50 oe	
	The income is $2250 \times 20p = \pounds450$.		M1		M1 for multiplication 2250 \times 20p oe	
	The probability of a win on each play is					
	$\frac{1}{1}$.		M1		M1 for $\frac{1}{120} \times 2250$ oe	
	120 The expected number of wins is					
	$\frac{1}{120}$ × 2250 = 18.75		M1		M1 for 19 × 5 oe	
	= 19 (nearest whole number) The expected pay-out is $19 \times 55 = 595$					
	The expected pay-out is 19 × 25 – 255					
	fine expected profit in one year is $\pounds450 - \pounds95 = \pounds355$	£355	A1		A1 £450 – £95 (ft)	
			7			
20		It will help to show all nine possible outcomes and which ones give two socks	B1	2	B1 for clear explanation that shows awareness of nine possible outcomes (3 possible colours and then a	Н
		of the same colour. Then the probabilities			further choice of 3), together with a comment about the	
		on the branches can be used to work out the chance of each outcome.	B1		B1 for use of technical notation and possible use of a	
			2		probability tree diagram to aid explanation	
21		He forgot there were now only 49 cards	B1	2	B1 for comment that shows understanding that the	Н
		left in the pack. The probability of being			cards had not been replaced, leaving the final ace to be	
		dealt the final ace is $\frac{1}{49}$.				
			1			

22	$P(\text{picture card}) = \frac{16}{52}$		M1	3	M1 for multiplication $\frac{16}{52} \times \frac{15}{51} \times \frac{14}{50} \times \frac{13}{49}$	Н
	P(four in a row) = $\frac{16}{52} \times \frac{15}{51} \times \frac{14}{50} \times \frac{13}{49}$					
	$=\frac{4}{595}$					
	= 0.0067	0.0067	A1 2		A1 cao	
23		Work out P(Y), P(G) and P(O).	B1	2 3	B1 for stating the need to find the probabilities of each first oe	Н
		Then $P(Y) \times P(yellow second)$, remembering both the numerator and denominator will be 1 less.	B1		B1 for reminding about the change in numerator and denominator oe	
		Then $P(G) \times P(\text{green second})$, remembering both the numerator and denominator will be 1 less. Then $P(O) \times$				
		P(orange second), remembering both the numerator and denominator will be 1 less.	B1		B1 for final addition of probabilities oe	
		Then add together these three probabilities. She is most likely to forget to reduce the denominator by one for the second jelly baby.	B1		B1 for example or relevant diagram	
			4			
24	Work out the probability that no two friends choose the same random number.		M1	3	M1 for multiplication $\frac{8}{9} \times \frac{7}{9} \times \frac{6}{9} \times \frac{5}{9}$	Н
	$P(\text{no match}) = \frac{8}{9} \times \frac{7}{9} \times \frac{6}{9} \times \frac{5}{9}$					
	$=\frac{1680}{6561}$					
	= <u>560</u>					
	2187 P(match) = 1 – P(no match)		M1		M1 for (1 – probability of no match)	
	So P(match) = $1 - \frac{560}{2187} = \frac{1627}{2187}$		۸1		A1 for rounding and ft	
	= 0.743 941 472 3	0.74	3			

25 a	Probability that they don't have their birthday on the same day is: $\frac{364 \times 363 \times 362(365 - 24)}{365^{25}}$ Probability that they do is:		M1	2	M1 for probability that the 25 people have birthdays on different days oe	H
	$1 - \frac{364 \times 363 \times 362(365 - 24)}{365^{25}}$		M1		M1 for probability that they do being 1 – probability that they don't	
b	Alison is incorrect, a choice of $\frac{25}{365}$ would only give you the probability of choosing 25 days from the year and they would not be the same day.		A1		A1 for clear explanation of the probability defined by $\frac{25}{365}$ oe	
С		In reality birthdays are not evenly distributed through the year. For example more babies are born in Spring.	B1		B1 for valid assumption that considers an uneven distribution of birthdays	
26.0			0	2	D4 for which accountant as	
20 8		Assumptions made in order to start the question: All letters are equally likely to be initial letters. All 10 people are using the same alphabet for naming.	ы	2	Bi for valid assumption de	
b	Probability that they don't is:		M1		M1 for probability that the 10 people have first names	
	<u>25 × 24 × 23(26 – 9)</u>		M1		starting with the same letter oe $M1$ for probability that they do being 1 – probability that	
	26 ¹⁰		IVI I		they don't	
	= 0.005 25 Probability that they do is:		A1		A1 ft	
	$1 - \frac{25 \times 24 \times 23(17)}{26^{10}}$					
	= 0.994 75		D1		P1 for adaptation of coloulation	
	$1 - \frac{25 \times 24 \times 23(17)}{26^{10}} - 0.5$	0.994 75	5			