Guidance o	Guidance on the use of codes for this mark scheme					
Μ	Method mark					
А	Accuracy mark					
В	Working mark					
cao	Correct answer only					
oe	Or equivalent					
ft	Follow through					

Question	Working	Answer	Mark	AO	Notes	Grade
1	79 298 – 78 987 = 311 kWh used.		M1	2	M1 for subtracting the given readings to find the amount of electricity used	В
	80 kWh × 20.95 pence = 1676 pence = £16.76		B1		B1 for multiplying 80 by 20.95 or for writing down £16.76	
	311 - 80 = 231 231 × 10.80 pence = 2494.80 pence = £24.948		B1		B1 for subtracting 80 from 311 and then finding the cost of the remainder used by multiplying by 10.80 or for writing down £24.948	
	Total bill = £16.76 + £24.948 = £41.708	£41.71	B1		B1 for adding the two amounts found together or writing down £41.708	
			A1		A1 for converting to pounds correctly	
	Assumption that if you average consumption over the year, April will be representative.	Yes	B1		B1 for assumption made such as that given or showing that the standing order is higher than the cost of electricity used in April oe assumptions stated	
			6			

2	Assuming dates are inclusive and not a leap year:	He should stay with his current supplier, assuming that electricity use continues at the same level. The summary does not	M1	2	M1 for showing how many days from each month are used and added together	В
	27 August to 30 December = 4 + 30 + 31 + 30 + 30 = 125 days 31 December to 9 April = 1 + 31 + 28 + 31 + 9	include the summer months when use is likely to be less. The difference is likely to be greater for the summer months.	A1		A1 for stating the assumptions about inclusive days, that this is not a leap year and for calculating number of days correctly	
	= 100 Total number of days = 125 + 100 = 225 Total amount of electricity used		B1		B1 for showing how to find the difference of the readings	
	= 55 916 – 53 480 = 2436 kWh		B2		B2 for showing how to calculate each part of the total cost	
	Current supplier: 225 × 13.99 pence = 3147.75 pence = £31.4775		B1		B1 if the conversion to pounds and correct rounding has not been done	
	2436 × 15.09 pence = 36759.24 pence = £367.5924 Total = £31.4775 + £367.5924 = £399.07		B2		B1 for showing how the cost is derived for the new supplier with the same data as before B1 for finding the total cost and correctly rounding into	
	New supplier: 225 × 23.818 pence = 5359.05 = pence = £53.5905				money units B1 if the correct amount has been calculated but not rounded or changed to correct monetary units	
	2436 × 14.37 pence = 35005.38 pence = £350.0538 Total = £53.5905 + £350.0538 = £403.64		A1		A1 for correctly stating he should stay with current supplier	
			B2		B2 for clarity of answer, including any assumptions given	
			11			

3 a	175 ÷ 8 = 21.875 Round up to the nearest integer, 22, as tables are needed for everybody and you can't have part of a table. $175 \div 8 = \pounds21.875$	M1 A1 B1 M1	2 3	M1 for dividing guests by number at a table A1 for the rounded, correct integer B1 for explaining the need to round up to the nearest integer M1 for dividing bill by the number at the table	В
b	If all the guests pay the same amount of £21.88 or more there is enough to cover the bill. 175 \div 8 = 21.875	A1 B1 M1		A1 for a correct monetary amount higher than £21.875 and less than £22 unless a tip is mentioned B1 for stating the need to round up in order to create a total higher than the bill if they all pay the same M1 for correctly dividing number of bread rolls by	
с	Cannot have a fraction of a box, so only 21 boxes can be filled. 21 x $8 = 168$ rolls hence 7 rolls left over	M1 A1 M1		number in each box or the number 21.875 M1 for stating the need to truncate the amount A1 for the correct truncation M1 for calculating the number of boxes multiplied by 8 or the total 168	
d	Average speed = distance ÷ time	A1 M1		A1 M1 for stating formula for calculating speed	
e	$165 \div 8 = 21.875$ km/h You do not need to round this figure as the speed can be given with this accuracy.	A1 B1 B2 16		A1 for the correct answer with correct units B1 for stating no need to round the answer B1 for describing what is the same and what is different about each context B1 for quality of questions and explanations in mark scheme	

4 a i	$4.6 \times 40 = 4.6 \times 10 \times 4$ = 46 × 4		M1	3	M1 for knowing and using the links	В
	= 40 x 4 = 184	184	A1		A1 for correctly using the links to get to 184	
ii		50 × 40 = 200	B1		B1 for correctly showing rounded figures to show the	
		Two correct calculations, e.g. $1156 \div 34$ = 34 Multiplying both by ten $11.56 \div 0.34 = 34$ Dividing both by ten	B2		answer is reasonable B1 for each correct statement B1 for each correct explanation of the relationships between the calculations	
iv	24 × 72 = 1728 1728 ÷100 = 17.28	Two correct calculations, e.g. $2.4 \times 7.2 =$ 17.28 Divide both by 10 $24 \times 0.72 = 17.28$ Divide one of the numbers by 100	B2		B1 for each correct statement B1 for each correct explanation of the relationships between the calculations	
b		Suitable question, using concepts introduced in part a.	B2		B1 for each set of questions, but the second must be harder than the first B1 Explanation marks for correct explanation of the relationships between the calculations and identification of progression in difficulty	
			9			
5		2484 and 3426 are both even and so are divisible by 2.	B2	2	oe B1 for each reason why the numbers cannot be prime	В
		17 625 ends in a 5 so is divisible by 5. Therefore none are prime numbers as they have factors other than one and themselves.	B2	3	B2 for quality of explanation and communication	
			4			
6	$ \begin{array}{r} 17 \times a = 629 \\ a = \frac{629}{17} \end{array} $	37	M1 A1	3	M1 for dividing 629 by 17 A1 for 37	В
	Therefore: a = 37		B2		B1 for clarity of communication B1 for use of mathematical connectives	
			4			

7	4.75 ≤ space < 4.85 4.25 ≤ car < 4.75		B1 B1	3	B1 for stating upper and lower bounds of space B1 for stating upper and lower bounds of car	В
i		A – Yes, the car is always smaller than the smallest possible space.	B1		B1 for correct explanation of why this is definitely true oe	
ii		B – No, the smallest space is the same size as the largest car length.	B1		B1 for correct explanation of why this is definitely not true oe	
iii		C – No, because the car is always smaller than the minimum size of the space, you can always say it will fit.	B1		B1 for correct explanation of why this is definitely not true oe	
8	14.5 cm ≤ brick < 15.5 cm	The maximum length for 20 identical	M1	3	M1 for identifying the upper bound of the length of one	В
		bricks is: 20 × 15.5 = 310 cm	A1	Ū	brick and multiplying this by 20 A1 for correct answer only	
			2			
9 a		How long will it take Barry to recover the money it cost him to convert the car?	B1	3	B1 for suitable question oe	М
b		Cost of 1 litre of LPG (CPLG) Cost of 1 litre petrol (CP) The distance he can travel per litre of each fuel (DPLG and DP) How far does he travel in one month (D)	B4		B1 for each piece of information oe	
c		Cost of using LPG per month is: $A = CPLG \times (D \div DPLG)$ Cost of using Petrol per month is: $B = CP \times (D \div DP)$ The saving is $B - A$	M1 M1 M1 A1 B1		M1 for trying to find first cost M1 for correct method of finding this cost M1 for trying to find second cost M1 for correct method of finding this cost A1 for finding this difference correctly B1 for clarity of explanation throughout part c	
d		Can now ask: 'Is B – A more than £66.99?'	B1		B1 for clarity of explanation in linking part ${f c}$ with the new information	

10	Assume the dolphin starts from the bottom. A complete cycle from top to bottom, back to top, takes 7 minutes. Therefore in 90 minutes it completed the following cycles: $90 \div 7 = 12.857 142.8 \text{ cycles}.$ It has therefore completed 12 cycles but is not back at the back at the bottom. To work out which of the other options is correct calculate: $0.857 142.8 \times 7 = 6 \text{ minutes}.$		M2 B1 M1 B1	2	 M1 for adding the times to create a 7-minute cycle M1 for dividing 90 by the time of one cycle B1 for stating that the dolphin has completed 12 cycles M1 for multiplying the fraction part of 12.8 by 7 B1 for finding this time and relating it to a part of the cycle 	М
	Therefore if we assume that the time started by observing the dolphin at the surface, the 6 minutes of the cycle will be towards the end of the cycle, it is on its way up.	On its way up.	A1		A1 for correct answer only	
11 a	26 letters × 25 numbers So 26 × 25 = 650	650	B1 M1 A1	2 3	B1 for knowing to use 26 and 25 M1 for 26 × 25 A1 correct answer only	М
Ь	5 flavours, 4 sizes, cone or tub 5 \times 4 \times 2 = 40	40	B1 M1 A1 6		B1 for identifying the need to use 5, 4 and 2 M1 for $5 \times 4 \times 2$ A1 for correct answer only	

12 a	Planet	Distance from the Sun (million km)	Diameter (km)	B2	2	B1 for correct distance column B1 for correct diameter column	M
	Mercury	5.8 × 10 ¹	4.878×10^3				
	Venus	1.08 × 10 ²	1.2104 × 10 ⁴				
	Earth	1.5 × 10 ²	1.2756 × 10 ⁴				
	Mars	2.28 × 10 ²	6.787 × 10 ³				
	Jupiter	7.78 × 10 ²	1.427 96 × 10 ⁵				
	Saturn	1.427 × 10 ³	1.20660 × 10 ⁵				
	Uranus	2.871 × 10 ³	5.1118 × 10 ⁴				
	Neptune	4.497 × 10 ³	4.8600 × 10 ⁴				
	Pluto	5.913 × 10 ³	2.274 × 10 ³				
b	i Jupiter ii Pluto iii Pluto iv Jupiter v Uranus vi Earth an			B6		B1 cao B1 cao B1 cao B1 cao B1 cao B1 cao	
С			istance from the Sun until you reach Jupiter. with distance from the Sun.	B3		B3 for clarity of explanation and of finding some trend within the data	
13 a			Sometimes true – not true for fractions or negative numbers.	B1 B1	2	B1 for sometimes B1 for correct explanation	М
b			Always true (positive × positive = positive, negative × negative = positive).	B1 B1		B1 for always true B1 for correct explanation	
С			False – you can't find the square root of a negative number using real numbers.	B1 B1		B1 for false B1 for correct explanation	
d			Always true – the cube root of a positive number is positive and the cube root of a negative number is negative.	B1 B1		B1 for always true B1 for correct explanation	
				8			

				_		
14 i	$5^6 \div 5^{-3} = 5^{(63)} = 5$ or		M2	2	M1 for showing subtraction of indices	М
	$5 \times 5 \times 5 \times 5 \times 5$				M1 for recognising $63 = 6 + 3$ or	
	$\frac{1}{1} = \frac{5 \times 5 \times 5}{1}$				M1 for showing each number as a product of factors	
	5×5×5 1				M1 for combining them to give all the 5s as numerators	
	=5 ⁹					
			M2		M1 for showing the indices are added	
ii	$5^6 \times 5^{-3} = 5^{(6+-3)} = 5^3$ or				M1 for recognising $6 + -3 = 6 - 3$ or	
	5×5×5×5×5×5 EVEVE E3				M1 for showing each number as a product of factors	
	$\frac{5\times5\times5\times5\times5\times5}{5\times5\times5} = 5\times5\times5 = 5^{3}$				M1 for combining them to give all the 5s as numerators	
			_			
	$27 \times 48 = n^4 \times 2^c$	The power $\frac{1}{2}$ represents the reciprocal of	B2		B1 for showing square root	
		squaring so take the square root.			B1 for clear explanation	
	Using prime factors:		M2		M1 for finding the prime factors of each number	
	Using prime raciors.		1012		M1 for stating each number as the product of the prime	
	(27)				factors	
	2/					
	(3) (9)		B2		B1 for 27 expressed as product of prime factors in	
					index form	
	\rightarrow				B1 for 48 expressed as product of prime factors in	
	(3) (3)				index form	
	$27 = 3^3$					
	(48)					
	(2) (24)					
	(2) (6)					
	(2) (3)				A1 for $n = 3$ cao	
	$48 = 2^4 \times 3$	So $n = 3$ and $c = 4$	A2		A1 for $c = 4$ cao	
	$40 = 2 \times 3$ So 27 × 48 = 3 ⁴ × 2 ⁴	50 n - 5 and c = 4	B1		B1 for clear communication of solution	
	0021 4 - 0 - 0 2					
			11			

15 a	$\frac{8.848 \times 10^3}{8.298 \times 10^2} = 10.66$	10.66	M1 A1	2	M1 for dividing mountain height by skyscraper height A1 accept 10.66 or 10.7	М
b	$8.298 \times 10^2 \div 10^3 = 0.8298 \text{ km}$	0.8298 km	M1 A1		M1 for dividing skyscraper height by 1000 A1 cao	
с	$20 \div 1\ 000\ 000\ 000 = 2 \times 10^{-8}$	2 × 10 ⁻⁸ m	M1 A1		M1 for dividing 2 by 1 000 000 000 A1 cao	
d	Area of eye = $9\pi \times 10^{-6}$ Radius of eye = $\sqrt{9\rho^{-5} \frac{10^{-6}}{\rho}}$	3.33 × 10 ^{−6}	M1 A1		M1 for connection between area of eye and πr^2 A1 cao	
	= 3×10^{-3} m Diameter of eye = $2 \times 3 \times 10^{-3}$ m = 6×10^{-3} m		M1 A1 B1		M1 for setting up fraction with correct numbers A1 cao B1 for clear communication shown of methods	
	Fraction = $\frac{2 \times 10^{-8}}{6 \times 10^{-3}}$ = 3.333 333 × 10^{-6}		11			
16	$\frac{\frac{1}{9}}{B}$ $\frac{2}{7}$ $\frac{1}{9} + \frac{2}{7} = \frac{7}{63} + \frac{18}{63} = \frac{25}{63}$		M1 B1 A1	2	M1 for adding given fractions B1 for use of common denominator 63 A1 cao	Μ
	$1 - \frac{25}{63} = \frac{38}{63}$	38 63	M1 A1 5		M1 for subtracting fraction sum from 1 A1 ft from their first $\frac{25}{63}$	

17	So $\frac{3}{8}$ of the residential land is used for services.		B1	2 3	B1 for recognising and stating $\frac{3}{8}$ of residential development is used for the services	М
	$\frac{3}{8} \stackrel{<}{} 5\frac{1}{2} = \frac{33}{16} \text{ m}^2$ $\left(\frac{33}{16} , 15\right) \stackrel{<}{} 100$ $= 13.75\%$	13.75% of the total area is used for services.	M1 A1 M1 A1		M1 for multiplying $\frac{3}{8}$ by $5\frac{1}{2}$ A1 oe M1 for finding above fraction of 15 and multiplying by 100 A1 accept 14 or 13.8	

18 a	The volume of the 2 cm cube is $2 \times 2 \times 2$ = 8 cm ³ . The volume of the 4 cm cube will be $4 \times 4 \times 4 = 64$ cm ³ . This is 8 times as much plastic as the 2 cm cube.	B2	3	 B1 for clear explanation showing how to find volumes of each cube B1 for clear indication that the volume of the 4 cm dice is not twice as much as the 2 cm Or B2 for stating that doubling the length will increase the volume by a factor of 2³ 	М
	The 4 cm dice will use $64 - 8 = 56 \text{ cm}^3$ more plastic. (Or could say 8 times as much.)	B1		B1 for stating 56 cm ³ more plastic or for stating 8 times as much	
bi	The volume of the 3 cm cube is $3 \times 3 \times 3$ = 27 cm ³ . The volume of the 2 cm cube is 8 cm ³ so will use 27 - 8 = 19 cm ³ more plastic or 27 ÷ 8 = 3.375 times as much.	B1 B1		B1 for finding the volumes of both cubes B1 for finding 19 cm ³ more plastic or for stating 3.375 times as much	
ii	The volume of the 3 cm dice = 27 cm ³ . The volume of the 4 cm dice = 4^3 = 64 cm ³ . So it needs 64 - 27 = 37 cm ³ less plastic.	B1 B1		B1 for finding the volumes of both cubes B1 for finding 37 cm ³ less plastic	
c	A dice that has twice the volume will have volume ratio of 1 : 2. Hence the length ratio will be 1 : $\sqrt[3]{2}$	M2		M1 for setting up ratio as 1:2 M1 for finding and stating the cube root of ratio B1 for calculation of 2 × cube root of 2	
	= 1 : 1.26. Hence the length of the dice will be $2 \times 1.26 = 2.52$ cm. The advice to give Siobhan is to make the cube with a side length just larger	B1 B1		B1 for communicating the idea of making a cube just larger than 2.5 cm	
	than 2.5 cm.	11			

19 a	0.8 is less than 1 so $68 \div 0.8$ will be greater than 68, because dividing by a number less than 1 gives an answer greater than the number you started with.	B1	3	B1 For 'greater' with a correct explanation	Μ
bi	$75 \times 20 = 1500$ oe The approximation will be smaller because each term has been rounded down.	M1 A1 M1		M1 for a suitable rounding of each number A1 for correctly multiplying the rounded numbers M1 for a correct justification	
ii	$\frac{25}{5} = 5$ oe The approximation will be smaller	M1 A1		M1 for suitable rounding of each number A1 for correctly dividing the rounded numbers	
	because the numerator has been rounded up and the denominator rounded down. Dividing a smaller number by a larger number will result in a smaller answer.	A1		A1 for a correct justification	
	$2^2 \times 7.5 = 30$ oe The approximation will be bigger because both numbers have been rounded up and so the estimation is larger than the real answer.	M1 A1 A1		 M1 for suitable rounding of each number A1 for correctly multiplying the rounded numbers A1 for a correct justification In each case award answer marks only if the estimation is one that could be done in your head. Award explanation marks only for a valid explanation but allow ft for a given approximation 	
20 a	Three calculations that approximate to 75, e.g. 1.1×75.1 based on 1×75 24.7 x 3.2 based on 25×3 147 ÷ 1.9 based on $150 \div 2$	B3 B2	2 3	B1 for each example that approximates to 75 B1 for use of multiplication and division B1 for evidence of progression of complexity in the questions	М
b	$9 \div 3$ is a better approximation than 10 ÷ 3 because $9 \div 3$ is easily worked out in your head with an integer answer whereas 10 ÷ 3 gives a decimal answer.	B2		oe B2 for use of mathematical language and possibly connectives in the answer	

21	The minimum area would be: $14.5 \times 18.5 = 268.25$ The maximum area would be less than: $15.5 \times 19.5 = 302.25$ where area = $15 \times 19 = 285$ The sensible answer for the area is 290 m ²	268.25 302.25 $268.25 \le$ floor area < 302.25 Given lengths are to 2 sf, so it would be sensible to give area to 2 sf also. 290 m^2	M1 A1 M1 A1 A1 M1 A1 A1 7	2	M1 for multiplying the lower bounds A1 cao M1 for multiplying the upper bounds A1 cao A1 cao M1 for explanation of why 2 sf should be used A1 cao	Μ
22 a	 Assume maximum mass of pallet is 525 kg. A 6-axle lorry can carry up to 44 ÷ 0.525 = 83.8 So a maximum of 83 pallets per trip. A 5-axle lorry can carry up to 40 ÷ 0.525 = 76.2 So a maximum of 76 pallets per trip. 80 is less than 83 but more than 76, so choose the 6-axle lorry, as this can do it in one trip. 	6 axle maximum of 83 pallets 5 axle maximum of 76 pallets	B1 M1 A1 A1 B2	2 3	 B1 for stating maximum possible mass of pallet M1 for dividing both load limits by maximum pallet mass A1 cao A1 cao B2 for clear explanation of correct choice 	М
b	 150 pallets can be split into two loads of 75, this is less than 76, so choose 5-axle lorry to make two trips, as this works out cheaper per trip. 159 can be split into two loads, 76 + 83. So 		B2 B2		B2 for clear explanation of correct choice B2 for clear explanation of correct choice.	
	choose the 5-axle lorry to make one trip, as this is cheaper per trip, and 6-axle lorry to make one trip as this avoids the need for a third trip.		D2			

23 a		0.4 m is written to 1 dp so could have a value between 0.35 m and 0.449 999 m. 0.400 m is written to 3 dp so could have a value between 0.3995 m and 0.400 499 9 m.	B2	2 3	B2 for clear explanation showing the range of possible values each could have	М
b		If the answer is required to 3 dp, to provide all the information required, you need to include three places of decimals even if the last digits are 0.	B1		B1 for clear explanation	
с		425 cm ≤ length < 435 cm	B1		B1 for communicating clearly this information	
d		Tenth of a metre or 10 cm.	B1		B1 for communicating clearly this information	
e	13.25 ≤ runner 1 < 13.35 13.295 ≤ runner 2 < 13.305	Therefore runner 1's fastest time could be less than that of runner 2. But it is also true that the slowest time for runner 1 is more than the slowest time of runner 2.	B1 B1 B2		B1 for runner 1 limits B1 for runner 2 limits B2 for clear explanation showing both possibilities	
		If each person is measured to the nearest kg. They could all, for example, weigh 100.4 kg and 7 × 100.4 > 700 kg.	B1 B2 12		B1 for a given example B2 for clear explanation	
24	Maximum number of people turning up will be 104 (as 105 will round to 110).		B1	3	B1 for stating maximum number of people that could turn up	М
	Assume 5% of the 280 do not turn up. 0.05 × 280 = 14		B1		B1 for finding the assumed number not turning up	
	Hence assume 266 seats already taken.		B1		B1 for finding assumed seats taken	
	365 – 266 = 99 free seats	If the estimate of how many will fail to turn up is correct, 266 seats will be taken with advance sales. This leaves 99 seats free. If up to 99 extra people turn up, they all get seats. If 100–104 turn up, some	B1		B1 for finding assumed number of free seats	
		will not get a seat. So it is possible they will all get seats.	B2		B2 for clear explanation using all the calculated data	
			6			

25	12.25 seconds ≤ time < 12.35 seconds 99.995 m ≤ distance < 100.005 m		B1 B1	2	B1 for time range B1 for distance range	М
	Speed = distance ÷ time Greatest speed is longest distance divided by shortest time		M1 B1		M1 for correct formula used for speed B1 for explanation of longest distance used with shortest time	
	= 100.005 ÷ 12.25 = 8.163 67 m/s		M1		M1 for division	
		8.164 m/s	A1 6		A1 for suitably rounded speed (4 or 5 sf)	
26	124.5 \leq volume < 125.5 Take cube root for lengths of sides, giving: 4.993 324 4 \leq length < 5.006 657 8 Area of side will be square of lengths,		B1 M1 A1	2	B1 for stating limits of accuracy for volume M1 for finding cube root to find length A1 for un rounded limits to length	М
	giving 24.933 289 ≤ area < 25.066 622	24.93 cm² ≤ area < 25.07 cm²	M1		M1 for squaring unrounded length limits	
			A1 5		A1 for rounded limits to 3 or 4 sf	
27 a i		True. When $n = k$, each box contains 1 ball. So when $n > k$ at least one box contains at least two balls.	B1 B1	2	B1 for explaining how it is true: can use example or diagram to show this B1 for clear communication	М
ii		False, for example if $n = 5$ and $k = 2$, $\frac{n}{k} = \frac{25}{5} = 2.5$ As you cannot have half a ball, the statement is false.	B1 B1		B1 for explaining how it is false B1 for clear communication	
iii		False, as a normal year has 365 days there are 366 people, there must be at least two people who share a birthday. OR this could be possible in a leap year, but then not necessarily so.	B1 B1		B1 for explaining how it is false C for clear communication	
b	The maximum for which no grade is achieved by 5 students occurs when each grade is achieved by 4 students, which means $6 \times 4 = 24$ students. Hence, having one more student will guarantee that at least one grade is achieved by 5 students.	At least 25 students.	M1 M1 A1 9		M1 for least number with no grade with 5 students M1 for adding one more student A1 cao	

28 a	Length of A4 paper = 297 mm = 2.97×10^2 mm 1 mm = 1×10^{-6} km Area A4 paper = $2.97 \times 10^2 \times 1 \times 10^{-6}$ km = $2.97 \times 10^{(2-6)} = 2.97 \times 10^{-4}$ km or $297 \div 1\ 000\ 000 = 0.000\ 297$ $0.000\ 297$ km = 2.97×10^{-4} km	False	M1 A1 B1	2	M1 for changing units into mm then converting to m A1 for finding correct length of A4 B1 for effective use of SI in calculation Can also use an approximation of the length of A4 paper	н
b	$3^{-3} = \frac{1}{3}^{3} = \frac{1}{9}$ $\frac{1}{3} - 9 = -8\frac{2}{3}$ The two numbers are not equal.	False	B2		B2 for clear explanation and stating false	
с	$16^{2} = (2 \times 8)^{2} = (2^{1} \times 2^{3})^{2} = (2^{(1+3)})^{2} = (2^{4})^{2}$ $= 2^{(4 \times 2)} = 2^{8}$	True	B2		B2 for clear explanation and stating true	
d	$4\sqrt{3} \times 3\sqrt{3} = 4 \times \sqrt{3} \times 3 \times \sqrt{3}$ $= 4 \times 3 \times \sqrt{3} \times \sqrt{3}$ $= 12 \times 3 = 36$ $7\sqrt{7} = \sqrt{49} \sqrt{7}$ $= \sqrt{49} \sqrt{7} = \sqrt{343}$	False	B2		B2 for clear explanation and stating false	
	Is $\sqrt{343} = 36$? We know that $\sqrt{400} = 20$ so $\sqrt{343}$ will be less than 20 and therefore not 36.					
	Or $4\sqrt{3} \times 3 \times \sqrt{3}$ $= \sqrt{16 \times 3} \times \sqrt{9 \times 3}$ $= \sqrt{1296} = 36$ $7\sqrt{7} = \sqrt{49 \times 7}$ $= \sqrt{343}$ But 1296 $\neq 343$ So:					
	4 √ 3 ´ 3 ´ √ 3 ¹ 7√7		9			

29 a	$\sqrt{25} = 5$	False	M1	2	M1 for finding a suitable comparison	Н
	So √19 < 5		A1		A1 for showing it is false and stating such	
b	$4^2 = 16$ $5^2 = 25$	True	M1 A1		M1 for showing the square of the limits A1 for showing it is true and stating such	
	So $\sqrt{23}$ is between 4 and 5.					
с	$2\sqrt{2} = \sqrt{4 \times 2} = \sqrt{8}$	False	M1		M1 for showing $\sqrt{4 2}$	
	So $2\sqrt{2}$ is not less than $\sqrt{8}$ but is equal to it.		A1 B1		A1 for showing it is false and stating such B1 for explaining they are in fact equal	
iv	$\sqrt{0.38} = \sqrt{\frac{38}{100}}$	True	M1		M1 for showing both in similar comparable terms	
	$=\sqrt{38}$, $\sqrt{\frac{1}{100}}$		A1 B1		A1 for showing it is true and stating such B1 for clear concise communication of method	
	Consider 0.6					
	$=\sqrt{36} \sqrt{\frac{1}{100}}$		10			
	Hence $\sqrt{0.38} > 0.6$					
30	$27^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{27}}$	Odd one out is $25^{-\frac{1}{2}}$.	M3	2	M1 for showing $27^{-\frac{1}{3}} = \frac{1}{3}$	н
	$=\frac{1}{3}$				M1 for showing $25^{-\frac{1}{2}} = \frac{1}{5}$	
	$25^{-\frac{1}{2}} = \frac{1}{\sqrt{25}} = \frac{1}{5}$				M1 for showing $3^{-1} = \frac{1}{3}$	
	$3^{-1} = \frac{1}{3}$		A1		A1 cao	
31	1 1		4			
31	$x^{-\frac{1}{4}} = y^{-\frac{1}{2}}$	Any example where x is the square of y, e.g. $x = 1$, $y = 1$ x = 4, $y = 2$	M2	2	M1 for squaring both sides to make information clearer M1 for considering only the denominator	н
	$\frac{1}{\sqrt[4]{x}} = \frac{1}{\sqrt{y}}$	x = 4, y = 2 x = 9, y = 3	A1		A1 for a correct example	
	Square both sides: $\frac{1}{\sqrt{x}} = \frac{1}{y}$		B1		B1 for clear progression through the solution	
	$\frac{\sqrt{x}}{y}$ Hence $\sqrt{x} = y$					
	Hence $x^2 = y$		4			

32	2.5 x $10^3 = 2500$ Too small 2.5 x $10^4 = 25000$ 2.5 x $10^5 = 250000$ Too big	<i>n</i> = 4	M1 A1	2	M1 for using trial and improvement A1 for correct answer	Н
			2			
33 a		0.6	B1	2	сао	Н
b		0.9	B1		сао	
С		1.3	B1		сао	
d		0.3	B1		сао	
е		0.1	B1		сао	
f		1.2	B1		сао	
g		1.5	B1		сао	
h		1.4	B1		сао	
i		2.1	B1		сао	
j		3.5	B1		сао	
			10			
34	Try $a = 3, b = 4$	Statement is false.	M1 A1	2	M1 for finding an example that disproves the statement A1 for stating it is false	Н
	$\sqrt{(a^2+b^2)} = \sqrt{(9+16)} = \sqrt{25} = 5$		B1		B1 for clear communication of the solution	
	a + b = 7		3			
35		For example: $2\sqrt{3} \div \sqrt{3}$	B1	2	B1 for a correct division of two surds	н
		$= \frac{2\sqrt{3}}{\sqrt{3}}$	M1		M1 for showing how the surds will leave an integer	
		$\sqrt{3}$ The $\sqrt{3}$ cancels from numerator and	A1		answer A1 for clear communicating of method used	
		denominator leaving 2, an integer.	3			
36 a		For example: 3 + $\sqrt{2}$ and 3 – $\sqrt{2}$	B1	2	B1 for a correct possible pair of surds	Н
b		For example: $\sqrt{2}$ and $\sqrt{3}$	B1		B1 for a correct possible pair of surds	
			2	-		

37		$\sqrt{3}$ is more than 1 and less than 2, since $\sqrt{1} = 1$ and $\sqrt{4} = 2$. So 1 + $\sqrt{3}$ is more than 2 and less than 3.	B1 B1 2	2	B1 for explaining the integer range for $\sqrt{3}$ B1 for explaining how this relates to the 2 and 3 metres	Η
38 a	Earth diameter = 1.2756×10^4 km So radius = 6.378×10^3 Population = $7.185\ 004 \times 10^9$ Surface area sphere = $4\pi r^2$ Surface area of the Earth = $4 \times \pi \times (6.378 \times 10^3)^2$ = $5.111\ 859\ 3 \times 10^8$ km ² Per person = $\frac{5.1118593 \times 10^8}{7.185\ 004 \times 10^9}$ = $0.071\ 146\ 22\ \text{km}^2$	0.07 km ² It reduces the total surface area by 30% of the total. Multiply the area per person by 0.3. The revised answer is 0.021 km ² .	M1 A1 M1 A1 M1 A1 B1 B2 10	2	M1 for halving diameter A1 for correct radius M1 for applying correct formula M1 for using correct formula with correct data Cao not rounded Correct division of surface area by population A1 correct answer rounded to 1 or 2 sf B1 for a clear communication of solution B2 for a clear explanation of how the percentage makes a difference	Η

39 a	True. All terminating decimals can also	B1	2	True followed by a clear example	Н
55 a	be written as fractions, for example:	B1	2	B1 clear explanation	
	$0.456 = \frac{456}{1000}$				
	$\frac{0.400}{1000}$				
b		B1		B1 for work showing how you change a recurring	
-	True, for example: <i>a</i> = 0.4242			decimal to fraction	
	100 <i>a</i> = 42.42	B1		B1 for clear explanation	
	100a - a = 42.42 0.42				
	Therefore: 99a = 42				
	$a = \frac{42}{99}$				
	For the recurring decimal with n repeating				
	digits, replace the 100 above by 10 ⁿ and	B2		B2 for clear explanation showing how all recurring	
	this will make it possible to follow the			decimals can be treated in this way to change to a fraction	
	same procedure and find the fraction.			Taction	
с	False. Irrational numbers cannot be	B2		B2 Clear explanation showing definition of rational	
Ū	expressed in the form a/b where a and b			numbers and at least one example	
	are integers; for example, π and $\sqrt{2}$ are				
	irrational numbers.	8			
40 a	If the prime factors of the denominator of	B2	2	B2 for clarity of explanation	Н
	a fraction in its simplest form are only 2				
	and/or 5 its decimal will terminate. So the following are terminating				
b		B1		B1 for the 3 correct fractions	
	$\frac{3}{5}, \frac{9}{20}, \frac{7}{16}$				
	-				
с	$\frac{1}{2}$ is non-terminating because the prime	B2		B2 for clear explanation	
_	6			· · · · · · · · · · · · · · · · · · ·	
	factors of 6 are 2 and 3. Any multiple of				
	$\frac{1}{6}$ where the numerator is not a factor or	B1		B1 for clear communication of method	
	a multiple of 6 will also be recurring.	ы			
		B1		B1 for clear communication of method	
	$\frac{1}{3} = \frac{2}{6} = 2 \times 0.166\ 666\dots$				
	$\frac{1}{1} = \frac{1}{1}$				
	$\overline{60}^{=}\overline{6\times10}$				
	$=\frac{1}{6} \times \frac{1}{10} = 0.1666 \div 10$				
	6 10				

				1
d	Easy to convert are 0.027 272 0.272 727		B1 for clear explanation of easy	
	Since after multiplying by 100	in each		
	case, you can eliminate the inf		B1 for clear explanation of more difficult	
	recurrence to be left with a sim		'	
	fraction.	B1	B1 for clear explanation for any recurring decimal	
	The hardest to convert are 2.7			
	27.272 727 only because the r			
	give an improper fraction.			
	give an improper naeton.			
	But any decimal with <i>n</i> recurring	ng digits M1	M1 for correct method of converting recurring decimal	
	can be changed to a fraction b		to fraction	
	multiplying by 10 ⁿ and eliminat			
	infinite part.			
е	<i>a</i> = 2.727 272	A1	cao	
C	100a = 272.7272		cao	
	100a - a = 270			
	99a = 270	A1	cao	
			Cau	
	$a = \frac{270}{99}$			
		B1	B1 clear communication of full answer.	
	<i>a</i> = 27.272 72	ы	Di clear communication of full answer.	
	100 <i>a</i> = 2727.272			
	100a - a = 2700			
	99 <i>a</i> = 2700			
	2700			
	$a = \frac{2700}{99}$ which is $\frac{270}{99} \times 10$,		
		11		

41	Using the sine rule:			2		Н
	$\frac{42}{\sin 61^{\circ}} = \frac{35}{\sin B}$ $\sin B = 35 \times \frac{\sin 61^{\circ}}{42}$		M2		M2 for showing how the sine rule is applied in this situation	
	To maximise the angle we need to		M1		M1 for setting the equation with sin <i>B</i> as subject	
	maximise this calculation by using the upper bound of sin 61° and 35 cm and the lower bound of 42 cm:		M1		M1 for clear explanation of how we maximise the calculation	
	$\sin B = 35.5 \times \frac{\sin 61.5^{\circ}}{41.5}$		A1		A1 for calculation used with correct bounds	
	$\sin B = 0.751 759 2$ $B = \sin^{-1} 0.751 759 2$ $B = 48.742 997^{\circ}$	B = 48.7° (3 sf)	A1 A1 7		A1 for correct value not rounded A1 for correct answer to 2 or 3 sf	