

4th Edition

GCSE

Higher Practice Book

Use and apply standard techniques

Rob Ellis

William Collins' dream of knowledge for all began with the publication of his first book in 1819. A self-educated mill worker, he not only enriched millions of lives, but also founded a flourishing publishing house. Today, staying true to this spirit, Collins books are packed with inspiration, innovation and practical expertise. They place you at the centre of a world of possibility and give you exactly what you need to explore it.

Collins. Freedom to teach.

Published by Collins An imprint of HarperCollins*Publishers* 1 London Bridge Street London SE1 9GF

Browse the complete Collins catalogue at www.collins.co.uk

© HarperCollinsPublishers Limited 2015

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, mechanical, photocopying, recording or otherwise – without the prior written consent of the Publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Rd, London W1T 4LP.

Cover design by We are Laura Cover images © Procy/Shutterstock, joingate/ Shutterstock Illustrations by Ann Paganuzzi Printed by Fuller Davies www.fullerdavies.com

Every effort has been made to contact the copyright holders but if any have been inadvertently overlooked, the publishers will be pleased to make the necessary arrangements at the first opportunity.

Maths

4th Edition

GCSE

Higher Practice Book
Use and apply standard techniques

Rob Ellis

24 Algebraic fractions and functions

The questions below are differentiated with colours to show progression. Green is the most accessible, moving through blue to the pink questions, which are the most challenging.

24.1 Algebraic fractions

$$a \frac{2x}{3} + \frac{4x}{5}$$

b
$$\frac{x+1}{3} + \frac{x+3}{2}$$

b
$$\frac{x+1}{3} + \frac{x+3}{2}$$
 c $\frac{2x-3}{2} + \frac{5x-1}{3}$

a
$$\frac{3x}{4} - \frac{2x}{5}$$

b
$$\frac{x+2}{2} - \frac{x+7}{5}$$

b
$$\frac{x+2}{2} - \frac{x+1}{5}$$
 c $\frac{4x-1}{2} - \frac{2x-4}{3}$

$$a \frac{2x}{3} + \frac{4x}{5} = 11$$

b
$$\frac{x+1}{3} + \frac{x+3}{2} = 10$$
 c $\frac{2x-5}{2} - \frac{x-1}{3} = 1$

$$c \frac{2x-5}{2} - \frac{x-1}{3} = 2$$

a
$$\frac{3x}{2} \times \frac{4x}{5}$$

b
$$\frac{x+1}{4} \times \frac{3}{2x+2}$$

b
$$\frac{x+1}{4} \times \frac{3}{2x+2}$$
 c $\frac{2x-1}{2} \times \frac{4}{3x-1}$

$$\mathbf{a} \quad \frac{x}{4} \div \frac{2x}{5}$$

b
$$\frac{x+3}{2} \div \frac{2x+6}{5}$$

b
$$\frac{x+3}{2} \div \frac{2x+6}{5}$$
 c $\frac{4x-2}{3} \div \frac{2x-1}{4}$

6 Show that
$$\frac{3}{x+2} + \frac{5}{2x-1} = 2$$
 simplifies to $4x^2 - 5x - 11 = 0$.

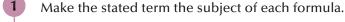
$$\mathbf{a} \quad \frac{3}{x-1} + \frac{2}{2x+3} = 5$$

a
$$\frac{3}{x-1} + \frac{2}{2x+3} = 5$$
 b $\frac{5}{3x+2} - \frac{3}{2x-3} = 4$ **c** $\frac{5}{x+3} + \frac{2}{2x+6} = 4$

$$\mathbf{c} \quad \frac{5}{x+3} + \frac{2}{2x+6} = 4$$

8 Simplify the expression
$$\frac{x^2-2x-3}{2x^2-10x+12}$$
.

24.2 Changing the subject of a formula



a
$$4(x-2y) = 3(2x-y)$$
 (x) **b** $p(a-b) = q(a+b)$ (a) **c** $A = 2ab^2 + ac$ (a) **d** $s(t+1) = 2r+3$ (r) **e** $st-r = 2r-3t$ (t)

b
$$p(a-b) = q(a+b) (a)$$

$$\mathbf{d} \ \ s(t+1) = 2r + 3 \ (r)$$

e
$$st - r = 2r - 3t(t)$$

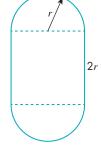
$$\mathbf{c} \quad A = 2ab^2 + ac \ (a)$$

- 2 Make x the subject of these equations.
 - $\mathbf{a} \quad ax = b cx$
- **b** x(a b) = x + b
- $\mathbf{c} \quad a bx = dx a$
- **d** x(c-d) = c(d-x)

- 3
- **a** The perimeter of the shape on the right is given by the formula $P = 2\pi r + 4r$.

Make r the subject of the formula.

b The area of the same shape is given by $A = \pi r^2 + 4r^2$. Make r the subject of this formula.



- **4** a Make x the subject of $y = \frac{x+2}{x+3}$.
 - **b** Make x the subject of $y = \frac{2-3x}{x-1}$.
- Make b the subject of $a = \frac{2+3a}{b-2}$.
- The resistance when two resistors with values *a* and *b* are connected in parallel is given by:

$$R = \frac{ab}{a+b}$$

- **a** Make *b* the subject of the formula.
- **b** Write down the formula when *a* is the subject.
- 7 a Make x the subject of the formula $y = \frac{x+1}{x+2}$.
 - **b** Show that the formula $y = 1 \frac{1}{x+2}$ can be rearranged to give $x = -2 \frac{1}{y-1}$.
- **8** a Rearrange the formula $y = \frac{x}{x+1}$ to make x the subject.
 - **b** Rearrange the formula $z = \frac{x+1}{x-1}$ to make x the subject.
 - c Equate the answers to part a and b, cross multiply and expand each side.

Make *y* the subject of the resultant formula.

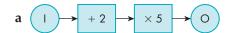
24.3 Functions

- 1 Find the input for this function machine when the output is:
 - **a** 12

b 16

c 8

2 For which input do these function machines also have the same output?



- 3 $f(x) = 3x^2 2$
 - **a** Find the value of:
 - **i** f(2)
- **ii** f(5)
- **iii** f(−1)
- **iv** f(-4)
- $\mathbf{v} = f(\sqrt{3})$

- **b** Given that f(k) = 25, find both values of k.
- 4 $g(x) = 8 x^2$
 - a Find the value of:
 - i g(2)

ii g(-3)

iii g(6)

iv g(-4)

 $\mathbf{v} = \mathbf{g}(\sqrt{7})$

vi g(-0.5)

- **b** Solve g(x) = -1.
- $f(x) = 2x^2 6x + 4$
 - a Find the value of:
 - i f(-1)

ii f(5)

iii f(−2)

- **b** Solve f(x) = 0.
- **6** Find an expression for $f^{-1}(x)$ for:
 - **a** f(x) = 10x 1
- **b** $f(x) = \frac{1}{3}x + 4$
- **c** f(x) = -5x 10

- **d** $f(x) = (x-3)^2$
- **e** $f(x) = \sqrt{x 4}$
- Given that $f(x) = \frac{x+3}{2x-1}$, find an expression for $f^{-1}(x)$.
- Given that $f(x) = \frac{3x+5}{2x-3}$, find an expression for $f^{-1}(x)$.
- Given that $f(x) = \frac{4x+3}{x-4}$, find an expression for $f^{-1}(x)$.
- What do you notice about your answers to questions 8 and 9? Make up a question of this type and find the inverse.

24.4 Composite functions

- 1 Evaluate each composite value
 - **a** f(x) = 3x 5
- $g(x) = x^2$
- Find fg(3).

- **b** f(x) = -9x 9
- $g(x) = \sqrt{(x-9)}$
- Find fg(10).

- **c** f(x) = -4x + 2
- $g(x) = \sqrt{(x-8)}$
- Find fg(12).

- **d** f(x) = -3x + 4
- $g(x) = x^2$
- Find gf(-2).

- **e** f(x) = -2x + 1
- $g(x) = \sqrt{x^2 5}$
- Find gf(2).
- 2 Find each composite function.
 - **a** f(x) = -9x + 3
- $g(x) = x^4$
- Find fg(x).

- **b** f(x) = 2x 5
- g(x) = x + 2
- Find fg(x).

- **c** $f(x) = x^2 + 7$
- g(x) = x 3
- Find fg(x).

- **d** f(x) = 4x + 3
- $g(x) = x^2$
- Find gf(x).

- **e** f(x) = x 1
- $g(x) = x^2 + 2x 8$
- Find gf(x).

For homework a teacher asks his class to evaluate the composite function
$$f(x) = x^2 - 3$$
 $g(x) = 5x$.

Find fg(-3)

This is Wayne's answer:

$$f(-3) = (-3)^2 - 3$$

$$g(x) = 5x$$

$$fg(-3) = 6(-15)$$

$$f(-3) = 9 - 3$$

$$g(-3) = 5(-3)$$

$$f(-3) = 6$$

$$g(-3) = -15$$

What has he done wrong? Solve the problem correctly.

24.5 Iteration

Find the first five iterations of the following iterative formulae:

a
$$x_{n+1} = \frac{x_n + 2}{6}$$

b
$$x_{n+1} = \frac{x_n}{5} + 4$$
 c $x_{n+1} = \frac{2}{x_n - 5}$

$$\mathbf{c} \quad x_{n+1} = \frac{2}{x_n - 5}$$

Start each one with $x_1 = 3$.

Find a root of the quadratic equation $2x^2 + 3x - 4 = 0$ using the iterative formula:

$$x_{n+1} = \sqrt{\frac{4 - 3x_n}{2}}.$$

Start with $x_1 = 2$ giving your answer to 2 decimal places.

- Show that $x^2 + x 1 = 0$ can be rearranged into the iterative formula $x_{n+1} = \sqrt{1 x_n}$ Use the iterative formula together with a starting value of $x_1 = 0.5$ to obtain a root of the equation correct to 2 decimal places.
- Show that $x^2 9x + 2 = 0$ can be re–arranged into the iterative formula $x_{n+1} = \sqrt{9x_n - 2}$.

Use the iterative formula together with a starting value of $x_n = 8$ to obtain a root of the equation correct to 2 decimal places.

- A rectangle has sides of (x 3) cm and (x + 4) cm and an area of 26 cm².
 - **a** Show that $x^2 + x 38 = 0$.
 - **b** Use the iteration formula $x_{n+1} = \sqrt{38 x_n}$ and an initial input of $x_1 = 3$ to find the length of each side of the rectangle, correct to 2 decimal places.
- Show that $x = \frac{5}{x} 3$ can be rearranged into the equation $x^2 + 3x 5 = 0$.

Use the iterative formula $x_{n+1} = \frac{5}{x_n} - 3$ to find a root of the equation giving your answer to 2 decimal places.

Solve the equation $x^3 - 2x + 3 = 5$ using an iterative formula.