Guidance	Guidance on the use of codes for this mark scheme						
М	Method mark						
Α	Accuracy mark						
В	Mark awarded independent of method						
С	Communication mark						
Р	Process, proof or justification mark						
oe	Or equivalent						
cao	Correct answer only						
ft	Follow through						

Question	Working	Answer	Mark	AO	Notes	Grade
1 a	$1.75 \times 3.50 = 6.125$	£6.13 to nearest penny	M1	3	M1 for correct method	В
			A1		A1 cao	
b	$6.13 \times 2 = 12.26$	£12.26	M1		M1 for correct method, accept $2 \times 6.125 = £12.25$	
c	$6.13 \times 1.05 = 6.4365$	C6 44 to poorest poppy	A1 M1		A1 for £12.26 or £12.25	
	6.13 x 1.05 = 6.4363	£6.44 to nearest penny	A1		M1 for correct method, accept 6.125 x 1.05 = 6.43125 A1 for £6.44 or £6.43	
			6		71101 20.1101 20.10	
2		995 ml	B1	3	B1 for 995	В
			1			
3	1 km = 1000 m		C2	3	C1 for km to metres	В
	$= 1000 \times 100 \text{ cm}$				C1 for metres to centimetres	
	= 100 000 cm	1 km = 100 000 cm	2			
4		He has forgotten that there are 60	B1	2	B1 for stating he has used 1 hour as 100 minutes	В
		minutes in an hour, not 100. $1\frac{1}{4}$ hours is	B1		B1 for correct answer as 75 minutes	
		75 minutes	2			
5	15 minutes = $\frac{15}{60} = \frac{1}{4}$ hour		M1	2 3	M1 for calculating the time the boys will be leaving	В
	Total time is $1\frac{3}{4}$ hours $+\frac{1}{4}$ hour = 2 hours					
	18:40 plus 2 hours gives 20:40. So the film will finish at 20:40. If Peter's Dad leaves at 9 p.m. and it is a		A1		A1 cao	
	20 min drive he will get to the cinema at	No, Peter's dad is not correct as they will	B1		B1 for dad's arrival time	
	9:20 p.m. or 21:20.	have been waiting for 40 min by the time he gets there.	C1		C1 for clear explanation of dad being late	
			4			

6	$\frac{1}{4} \text{ could be odd one out as it's the only} \\ \text{terminating decimal equivalent/the only} \\ \text{one with 1 as the denominator/unit} \\ \text{fraction.} \\ \frac{2}{6} \text{ could be odd one out as it's the only} \\ \text{one which is not in its simplest form.} \\ \frac{2}{3} \text{ could be odd one out as after} \\ \text{simplifying } \frac{2}{6} \text{ it's the only one not having} \\ \text{a numerator of 1/unit fraction.} \\$	C1 C1	2	C1 for a valid reason for $\frac{1}{4}$ C1 for a valid reason for $\frac{2}{6}$ C1 for a valid reason for $\frac{2}{3}$	В
7 a	Look at the first decimal place of the decimal, put the numbers in order. If any have the same digit in this place, look to the second decimal place and put these in order. Keep going along the decimal places until all numbers are in order. E.g. 0.24 Closest to 0.23 as it is smaller than 0.25 which is halfway between the two numbers.	3 C1 B1 C1	2	C1 for explanation of what you look for when ordering decimals. B1 for a decimal between 0 .23 and 0.27 (not 0.25) C1 for clear explanation	В

8 a	$500 - (85 \times 5) = 500 = 75$	75p	B1	2 3	B1 cao	В
b		500 – (85 × 5)	C1	3	C1 for simple word problem that requires the calculation	
С		e.g. for 500 × (85 ×5) Pip buys some nails in packs of five. Each pack is in a box containing 85 packs. He has ordered 500 boxes. How many nails has he ordered? e.g. for 500 + (85 × 5) Pip buys some nails in packs of five. He buys a box containing 85 packs. He already had 500 nails, so how many has he altogether now?	C1		C1 for simple word problem that requires the calculation	
		e.g. for 500 ÷ (85 × 5) Pip needs 500 nails. The nails come in packs of 5 in boxes containing 85 packs. How many boxes does he need?	C1 4		C1 for simple word problem that requires the calculation	
9 a		She was overdrawn.	B 1	2	B1 a correct answer	В
b	Difference between -123.67 and 1428.62, which equals 1428.62 + 123.67 = 1552.29	one was overdrawn.	M1	3	M1 for correct method of finding the difference	
	1 120.07 = 1002.20	£1552.29	A1 3		A1 cao	
10 a		x 100 Because multiplying by 100 will have the effect of moving 72 two places to the left.	B1 C1	2	B1 for a correct operation C1 for clear explanation	В
b		e.g. 100 ÷ 4 5 × 5	C2		C1 for a suitable question where the answer is 25. C1 for another suitable question where the answer is 25.	
С		25×10 E.g. I looked for a simple question with an answer of 10×25 , then realised this is the answer.	B1 C1		B1 for a correct question with answer of 250 C1 for a clear explanation	
11		A prime number has only two factors, one and itself. So 36 is not a prime number. The true statement is that 36 has 8 factors.	C1 B1 2	2	C1 for clear explanation B1 for correct true statement	В

12 a		No, a prime number cannot be a multiple of 4 because a prime number has only two factors, one and itself.	B1 C1	2	B1 for No C1 for clear explanation	В
b		e.g. 501 the sum of its digits is divisible by 3	B1 C1		B1 for a suitable number C1 for clear explanation	
С		A number is divisible by 6 if it is divisible by 2 (even) and divisible by 3 (the sum of its digits is divisible by 3)	C1		C1 for clear explanation	
d		e.g. 105 It ends in 5 and the sum of its digits is divisible by 3	B1 C1		B1 for suitable number C1 for clear explanation	
е		A number is divisible by 25 if it ends with 00, 25, 50, or 75.	C1 8		C1 for clear explanation	
13	√16 = 4	4 tiles	M1 A1 2	3	M1 for finding square root of 16 A1 cao	В
14		720 Use multiplication as the inverse of division. 7.2 × 10 × 10 = 7.2 × 100 = 720	B1 C1	2	B1 for 720 C1 for clear explanation.	В
15	$1 \times 20p (2 \times 20p = 40p > 34p)$ 14p left to find $2 \times 5p (3 \times 5p = 15p > 14p)$ $2 \times 2p = 4p$ Total 34p as required		P1	3	P1 for the process of finding suitable coins	В
	1 × 20p, 2 × 5p, 2 × 2p: 5 coins	5 coins	A1 2		A1 cao	

16 a	1 cm = 10 mm So 300 cm = 300 × 10 = 3000 mm		P1	2	P1 for process of changing one unit to the other	В
		So 30 000 mm is longer.	B1		B1 for correct statement	
b		e.g. 500 cm, 5000 mm	B1		B1 for a correct example	
			3			
17	12 x 15 = 180 ice creams all together		B1	3	B1 for 180	В
	Cost of ice creams = $12 \times £4.50 = £54$		B1		B1 for 54	
	$105 \times 80p = 8400p = £84$ 180 - 105 = 75		B1		B1 for 84	
	75 × 50p = 3750p = £37.50 Total sales		B1		B1 for 37.50	
	£84 + £37.50 = £121.50		B1		B1 for 121.50	
	Profit = £121.50 – £54 = £67.50		M1		M1 for finding difference	
	110111 - 2121.00 201 - 201.00	£67.50	A1		A1 cao	
			7			
18 a	540 - 300 = 240		M1	3	M1 for finding how many calls chargeable	В
	$240 \times 5 = 1200p = £12$		A1		A1 for 12	
	Add £25 for the month	£37	A1		A1 cao	
b	$240 \times 0.25 = 60$		M1		M1 for method of finding 25%	
	So 180 calls @ 5p					
	= $180 \times 5p = 900p = £9$ 60 calls @ 3p		B1		B1 for 9	
	$= 60 \times 3p = 180p = £1.80$		B1		B1 for 1.80	
	Total = £9 + £1.80 = £10.80					
	Difference = £12 - £10.80 = £1.20		M1		M1 for finding difference	
		£1.20	A1		A1 cao	
			8			

40 -		T	- 04		Tour 311 (2 1 11 9) 1 2	
19 a	Change both fractions to 12ths		C1	2	C1 for suitable fraction alongside with explanation	M
	$\frac{1}{3} = \frac{4}{12}$					
	$\frac{1}{2} = \frac{6}{12}$					
	$\frac{1}{2} - \frac{1}{12}$					
	D-4	5			1 1	
	Between these two is $\frac{5}{12}$	5 12	B1		B1 for any fraction between $\frac{1}{3}$ and $\frac{1}{2}$	
		· <u>-</u>			, <u>-</u>	
b	Change each to a decimal and look at the		5.4			
	difference to 1/3		P1		P1 for a suitable process of comparing the fractions	
	1 0 222 222		C1		C1 for accuracy of results	
	$\frac{1}{3} \to 0.3333333$					
	$\frac{10}{31} \rightarrow 0.322581$, difference is 0.010752					
	$\frac{20}{61}$ \rightarrow 0.327 869, difference is 0.054 644					
	$\frac{30}{91}$ \rightarrow 0.296 703, difference is 0.003 663					
	$\frac{50}{151}$ \rightarrow 0.331 126, difference is					
	151					
	0.002 208				B1 cao	
	So 50 is the closest	50 151	B1		3.000	
	So $\frac{50}{151}$ is the closest	151				
	OR					
	Make each fraction have a numerator of 1,					
	SO					
	$\frac{10}{31} \rightarrow \frac{1}{3.1}$					
	$\frac{1}{31} \rightarrow \frac{1}{3.1}$					
	$20 \rightarrow 1$					
	$\overline{61} \rightarrow \overline{305}$					
	30 1		5	1		
20	91 3.033	Compare the denominator but not take	C1	2	C1 for clear explanation	M
-0	0.000	into consideration the numerator.	0.	_	O F TO GOOD ON PROPERTY OF THE	
			1	1		

21 a			P1	3	P1 for process of splitting the shape into two rectangles	М
21 a	$3 \times 2.5 = \\ 7.5 \text{ m}^2 \\ 4.5 \times 2.5 = \\ 11.25 \text{ m}^2$		FI	3	Prior process of splitting the shape into two rectangles	IVI
			M1		M1 for method of finding total area of the shape	
	5 - 2.5 =		A1		A1 cao	
	2.5 m Total area is 11.25 + 7.5 = 18.75 m ²		M1		M1 for method of finding number of bricks	
	18.75 × 78 = 1462.5		A1		A1 cao	
	1463 to nearest whole brick	1463 bricks				
b			C1		C1 for showing cheapest way to buy bricks	
	1463 = 14 ×100 + 63					
	$= 1400 \times 1.08 + 63 \times 1.79$		M1		M1 for method of calculation	
	= £1512 + £112.77					
	= £1624.77					
	Or 15 × 100 = 1500 × 1.08					
	= £1620		A1		A1 cao	
	Cheaper to buy 15 x 100	£1620				
	Chapter to 22, 10 to 10		P1		P1 for process of finding out how many needed to buy	
С	1463 ÷ 11 = 133 So buy 133 lots of 10, getting 133 free Gives 1463 bricks Would need to buy 1330 bricks at £1.65		B1		B1 for 1330	
	plus VAT.		B1		B1 for £2633.40 ft	
	= £1.65 × 1.20 × 1330 = £2633.40	No, because the cost is about £1000	C1		C1 for stating no with clear explanation	
	About £1000 more.	more.	12		or for stating no with clear explanation	
22 a	About 21000 more.	4.6 × 40	P1	2	P1 for correct way of creating answer	М
ZZ a		$= 4.6 \times 40$ = $4.6 \times 10 \times 4$	FI		Fillor correct way or creating answer	IVI
		= 46 × 4				
		= 184	B1		B1 for 184	
b		e.g. 4.6 × 40	C1		C1 for clear explanation	
		Round to $5 \times 40 = 200$				
		So the answer in part a makes sense.	C1		C1 for clear explanation	
_		a a Divida hath hu 40 an acultin la la d	D4		D4 for first average	
С		e.g. Divide both by 10, or multiply both by 10 to give	B1 B1		B1 for first example B1 for second example	
		11.56 ÷ 0.34 = 34	ы		Di loi secona example	
		Or $1156 \div 34 = 34$				
			6			

23 a	Story about the calculation	C2	2	C1 for a sensible story	M
ь	Own calculation story with mark scheme	C2 4		C1 for suitable involvement of figures C1 for story with calculation C1 for suitable mark scheme	
24 a	$8 \times 100 = 8 \times 10 \times 10 = 80 \times 10$ as	C1	2	C1 for clear explanation	M
	required $\frac{400}{100} = \frac{40 \times 10}{10 \times 10} = \frac{40}{10} \times 1 \text{ as required}$	C1		C1 for clear explanation	
b	$6 \div \frac{1}{3}$ is the same as asking how many	C1		C1 for clear explanation	
	times does $\frac{1}{3}$ go into 6 which is 6 × 3 =				
	18				
	$6 \div \frac{2}{3}$ will be less than 18 as $\frac{2}{3}$ will go	C1		C1 for clear explanation	
	into 6 less times as it is bigger than $\frac{1}{3}$				
С	Use $3 \times 3 = 9$ and $3 \times 15 = 45$ to create,	C1		C1 for clear explanation	
	for example: $15 \times 3 = 45$ $45 \div 5 = 9$	B1 B1		B1 for first example B1 for second example	
d	e.g. Bill and Ted's ages multiply together to make 64. What are their ages? The product of Bill's baby sister and his	C2		C1 for first suitable question C1 for second suitable question	
	dad is 64. What are their ages? The link is Bill.	C1		C1 for creating and stating a link	
е	e.g. Three brothers win £15 between them. How much will each receive? Tom won £5 and bought some games that cost £1 each. How many games did	C2		C1 for first suitable question C1 for second suitable question	
	he buy? The link is winning.	C1 13		C1 for creating and stating a link	
25	4, 9, 25, 49 They are all the square of a prime number.	A1 C1 2	2	A1 cao C1 for clear explanation	M

26		True when: 4 is a factor of each of the numbers or 4 is a factor of just two of the numbers. False when: either only one or three of the numbers has a factor of 4	C1 C1	2	C1 for clear explanation C1 for clear explanation	M
27 a i ii		e.g. 101, 103, 107, 109 10 ³ = 1000 So 9 ³ = 729	B1 P1 B1	2	B1 for any prime number greater than 100 with justification P1 for process of looking for 9 ³ B1 cao	М
b b		89 + 11 2484: even so 2 is a factor 17625: ends in 5 so 5 is a factor 3426: even so 2 is a factor	B1 C1 C1		B1 for correct pair C1 for explanation about both even numbers C1 for explanation about multiple of 5	
С	$629 = x \times 17$ Using inverse operations and rearranging: $629 \div 17 = 37$	37	P1 B1 8		P1 for process of using inverse operation B1 cao	
28	Try first as 2 Second is 6 Third is 11		P1	3	P1 for starting with smallest prime of 2	М
	Sum is 19, out of range Try first as 3 Second is 9 Third is 14		C1 P1		C1 for clearly stating out of range P1 for trying next prime of 3	
	Sum is 26, possible Try first as 5		C1 P1		C1 for clearly stating it's a possible one. P1 for continuing with the next prime 5	
	Second is 15 Third is 20 Sum is 40 out of range	There is only one possible first number and that is 3.	C1 C1 7		C1 for clearly stating out of range C1 for final solution of only one possible answer	

29 a		Sometimes	B1	2	B1 for sometimes	М
20 4		True when the cube of a number is	C1	_	C1 for clear explanation	101
b		greater than 1.			'	
		Not true for numbers 1 or less.				
		Always				
		Always The square of a positive number is	B1		B1 for always	
		positive.	C1		C1 for clear explanation	
		The square of a negative number is	•			
		positive.	4			
30 b		2 ⁶ or 4 ³	B1		B1 for either	М
С		33	B1		B1 cao	
		62	D4		D4 and	
d		0-	B1		B1 cao	
			3			
31 a		10 x 2 or 2 x 10	B1	2	B1 for 10 and 2 either way round	М
L		00 40 0	D4	3	DA for the suite of the sure of the desire the sure desired of	
b		$20 \times 10 \times 2$ = 2 × 10 × 10 × 2	P1		P1 for showing the process of reducing to a product of primes	
		$= 2 \times 10 \times 10 \times 2$ $= 2 \times 2 \times 5 \times 2 \times 5 \times 2$			printes	
		$= 2 \times 2 \times 2 \times 2 \times 5 \times 5$				
		$= 2^4 \times 5^2$ as required.				
			0.4			
С		He has treated 2^N and $N \times 2$ as the same calculation.	C1 3		C1 for clear explanation	
00					D4	
32 a		1	B1	2	B1 cao	М
b	$6^2 \div 6^2 = 6^{2-2}$		M1		M1 subtracting the powers	
		60	A1		A1 cao	
С		60 = 1	B1		B1 cao	
		When you divide a number by the same number you always get 1.	C1		C1 for clear explanation	
d		Any combination of a and b such that the	B1		B1 any correct pair that add up to 9	
		sum is equal to 9				
		E.g. $a = 8$, $b = 1$	6			

33 a i		Sometimes True when the digits are to the left of the decimal point.	B1 C1	2	B1 for sometimes C1 for clear explanation	М
ii		Sometimes True when both are positive, false when one is negative.	B1 C1		B1 for sometimes C1 for clear explanation	
iii		Sometimes true for positive numbers, false for negative numbers	B1 C1		B1 for sometimes C1 for clear explanation	
b		e.g. $-\frac{1}{2} \times -\frac{1}{3} = \frac{1}{6}$	B1		B1 for a correct example	
С		This works because multiplying two negative numbers gives a positive one. Positive numbers are always larger than negative numbers.	C1		C1 for clear explanation	
d		False because 0.1 is smaller than 0.9	C1		C1 for false with a clear explanation	
34 a	42 – 15	27 °C	M1 A1	2 3	M1 for subtracting A1 cao	М
b		Easy, e.g. 1 – 8 Harder, e.g. –3 + –4	B1 B1 4		B1 for a correct example B1 for a correct, harder example	
35		Larger Dividing a positive number by a positive number less than 1 will always result in a larger number than you started with	B1 C1	2	B1 for larger C1 for clear explanation	M
36		I left home at 10 past 2 and walked for 50 minutes. The temperature was 13 °C. I could see an aeroplane overhead at 3000 feet. Altogether I had walked 3 miles.	C2	2	C1 for rounding the times and temperature sensibly. C1 for rounding distances sensibly	M
		Own question similar to the one in part a together with an answer and mark scheme.	C2		C1 for suitable question C1 for the mark scheme	

37	1 mile = $\frac{8}{5}$ km 5.5 miles = $\frac{8}{5}$ × 5.5 km = 8.8 km	Her usual supermarket is closer.	M1 A1 C1	3	B1 for conversion stated M1 for multiplying distance by conversion factor A1 for a correct answer C1 for clearly stating correct solution.	M
38	79 298 – 78 987 = 311 kWh used. 80 kWh @ £20.95= 1676p = £16.76 311 – 80 = 231 231 kWh@ £10.80 = 2494.80 = £24.948 Total bill = £16.76 + £ 24.948 = £41.708 Assumptions that if you average consumption over the year April will be representative.	£41.71 Yes	M1 B1 B1 B1 A1 C1	2	M1 for subtracting the given readings to find the amount of electricity used. B1 multiplying 80 by 20.95 or for writing down £16.76. B1 for subtracting 80 from 311 and then finding the cost of the remainder used by multiplying by 10.80 or for writing down £24.948 B1 for adding the two amounts found together or writing down £41.708 A1 for conversion to pounds correctly C1 for assumption made such as that given or showing that the standing order is higher than the cost of electricity used in April. oe assumptions stated	M

39	Assuming inclusive and not a leap year		M1	2	M1 for showing how many days from each month are	М
	27 August to 30 December				used and added together.	
	= 4 + 30 + 31 + 30 + 30 = 125 days		C1		C1 For stating the assumptions about inclusive days,	
	31 December to 9 April				that this is not a leap year and for calculating number	
	= 1 + 31 + 28 + 31 + 9				of days correctly.	
	= 100					
	Total number of days = 225 days					
	Total amount of electricity used		M1		M1 for showing how to find the difference of the	
	= 55916 - 53480 = 2436 kWh				readings	
	Current supplier		B2		B2 for showing how to calculate each part of the total	
	225 × 13.99 = 3147.75				cost. B1 if the conversion to pounds and correct	
	= £31.4775				rounding has not been done.	
	15.09 × 2436 = 36759.24					
	=£367.5924					
	Total = £399.07					
	New supplier		M1		M1 for showing how the cost is derived for the new	
	225 × 23.818 = 5359.05				supplier with same data as before.	
	= £53.5905		B2		B2 for the finding the total cost and correctly rounding	
	14.37 × 2436 = 35005.38				into money units. B1 if the correct amount has been	
	= 350.0538				calculated but not rounded or changed to correct	
	Total = £403.64				monetary units.	
		He should stay with his current supplier	A1		A1 for correctly stating he should stay with current	
		assuming that electricity use continues at			supplier.	
		the same level. The summary does not	C2		C2 for clarity of answer, including any assumptions	
		include the summer months when use is]		given.	
		likely to be less. The difference is likely to			3 -	
		be greater for the summer months.				
		g. ca.tor to tallo callino monthlo.	11			

40 ai		175 ÷ 8 = 21.875 Round up to the nearest integer, 22, as tables are needed for everybody and you can't have part of a table.	M1 A1 C1	2 3	M1 for dividing guests by number at a table. A1 for the rounded, correct integer. C1 for explaining the need to round up to the nearest integer.	M
ii		$175 \div 8 = £21.875$ If all the guests pay the same amount of £21.88 or more there is enough to cover the bill.	B1 A1 C1		B1 for dividing bill by the number at the table. A1 for a correct monetary amount higher than 21.875 and less than 22 unless a tip is mentioned C1 for stating the need to round up in order to create a	
iii		175 ÷ 8 = 21.875 Cannot have a fraction of a box, so only 21 boxes can be filled. 21 x 8 = 168 rolls hence 7 rolls left over	B1 P1 A1 P1 A1		total higher than the bill if they all pay the same. B1 for correctly dividing number of bread rolls by number in each box or the number 21.875 P1 for stating the need to truncated amount as you can't have a fraction of a box A1 for the correct truncation P1 for dividing number of boxes by 8 or the total 168 A1 for the answer of 7 rolls left over.	
iv		Average speed = distance ÷ time 165 ÷ 8 = 21.875 km/h You do not need to round this figure off as the speed can be given with this accuracy.	M1 A1 C1		M1 for stating formula for calculating speed A1 for the correct answer with correct units. C1 for stating no need to round off answer	
b			C2		In each case for part b 1 mark for answer and an extra mark for describing what is the same and different about each context. C2 Extra communication marks available for quality of questions and explanations in mark scheme	
41 a	24 × 72 = 1728 1728 ÷100 = 17.28	Dividing both by ten Correct calculation e.g. $2.4 \times 7.2 = 17.28$ Divide both by 10 $24 \times 0.72 = 17.28$ Divide one of the numbers by 100	B2 B2	3	B1 for each correct statement B1 for each correct explanation of the relationships between the calculations.	M
b		Suitable question using concepts introduced in part a	B2 B2 15		B1 for each set of questions, but the second must be harder than the first. B2 marks for correct explanation of the relationships between the calculations and identification of progression in difficulty.	

42	4.75 ≤ space < 4.85 4.25 ≤ car < 4.75		B1 B1	3	B1 for stating upper and lower bounds of space. B1 for stating upper and lower bounds of car	М
		A: Yes, the car is always smaller than the smallest possible space	C1		C1 for correct explanation of why this is definitely true oe	
		B: No, the smallest space is the same size as the largest car length.	C1		C1 for correct explanation of why this is definitely not true oe	
		C: No, because the car is always smaller than the minimum size of the space you	C1		C1 for correct explanation of why this is definitely not true oe	
		can always say it will fit.	5			
43	14.5 cm ≤ brick < 15.5 cm	So maximum length for 20 identical bricks is: 20 × 15.5 = 310 cm	M1	3	M1 for identifying the upper bound of the length of one brick and multiplying this by 20	М
			A1 2		A1 cao	
44 a		How long will it take Barry to recover the money it cost him to convert the car?	C1	3	C1 for suitable question oe	Н
b		Cost of 1 litre of LPG (l) Cost of 1 litre petrol (p) The distance he can travel per litre of each fuel (d_l and d_p) How far does he travel in one month (d)	C4		C1 for each piece of information oe	
С		Cost of using LPG per month (c_l) is: $c_l = l \times (d \div d_l)$ Cost of using Petrol per month (c_p) is: $c_p = p \times (d \div d_p)$ The saving is $c_p - c_l$	P1 B1 P1 B1 B1 C2		P1 for trying to find first cost B1 for correct method of finding this cost P1 for trying to find second cost B1 for correct method of finding this cost B1 for finding this difference correctly C2 for clarity of explanation throughout part c	
			13		52 for startly of explanation unoughout part 6	

45		A complete cycle to top, takes 7 m	nins competed the			M2	3	M1 for adding the times to create a 7 minute cycle M1 for dividing 90 by the time of one cycle	Н
		It has therefore on NOT back at the	completed 12 cycles but back at the bottom. h of the other options is			C1		C1 for stating that the dolphin has completed 12 cycles	
		0.857 142 8 x 7 = Therefore if we a started by observ surface, the 6 mi				M1 C1		M1 for multiplying the fraction part of 12.8 by 7 C1 for finding this time and relating it to a part of the cycle	
		αр.		On its way up.		A1 6		A1 cao	
46		26 letters × 25 nu So 26 × 25 = 650		650		B1 M1 A1	2 3	B1 for knowing to use 26 and 25 M1 for 26 x 25 A1 cao	Н
						6			
47 a		Planet	Distance from the sun (million km)	Diameter (km)		B2	2	B1 for correct distance column B1 for correct diameter column	Н
		Mercury	5.8×10^{1}	4.878×10^3					
		Venus	1.08×10^2	1.2104 × 10 ⁴					
		Earth	1.5×10^2	1.2756 × 10 ⁴					
		Mars	2.28×10^2	6.787×10^3					
		Jupiter	7.78×10^2	1.42796 × 10 ⁵					
		Saturn	1.427×10^3	1.20660 x 10 ⁵	1				
		Uranus	2.871 × 10 ³	5.1118 × 10 ⁴					
		Neptune	4.497×10^3	4.8600 × 10 ⁴					
b	i	Jupiter				B6		B1 cao	
	ii	Mercury						B1 cao	
	iii	Mercury						B1 cao	
	iv	Jupiter						B1 cao	
	٧.	Uranus						B1 cao	
	vi	Earth and Venus				8		B1 cao	
1						0			

48 a		False You can't find the square root of a negative number that is a real number.	B1 B1	2	B1 for false B1 for correct explanation	Н
b		Always true The cube root of a positive number is positive and the cube root of a negative number is negative.	B1 B1		B1 for always true B1 for correct explanation	
49 ai	$ \begin{array}{l} 5^{6} \div 5^{-3} = 5^{(6 3)} = 5^{9} \\ OR \frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{1} = \\ \frac{1}{5 \times 5 \times 5} = \\ = \frac{5 \times 5 \times 5}{1} = 5^{9} \end{array} $		M2	2	M1 for showing subtraction of indices M1 for recognising $63 = 6 + 3$ Or M1 for showing each number as a product of factors M1 for combining them to give all the 5s as numerators.	Н
ii	$5^{6} \times 5^{-3} = 5^{(6+-3)} = 5^{3}$ OR $\frac{5 \times 5 \times 5 \times 5 \times 5}{5 \times 5 \times 5} = 5 \times 5 \times 5 = 5^{3}$		M2		M1 for showing the indices are added M1 for recognising $6 + -3 = 6 - 3$ Or M1 for showing each number as a product of factors M1 for combining them to give all the 5's as	
b		$\frac{1}{2}$ as a power represents the reciprocal of square so the square root.	C2		numerators. C1 for showing square root C1 for clear explanation	
50 a	$8.848 \times 10^3 \div 8.298 \times 10^2 = 10.66$	10.66	M1 A1	2	M1 for dividing mountain by skyscraper A1 accept 10.66 or 10.7	Н
b	$8.298 \times 10^2 \div 10^3 = 0.8298 \text{ km}$	0.8298 km	M1 A1		M1 for dividing skyscraper height by 100 A1 cao	
С	$20 \div 1\ 000\ 000\ 000 = 2 \times 10^{-8}$	2 × 10 ⁻⁸	M1 A1 6		M1 for finding reciprocal of 1 000 000 000 A1 cao	
51	Fractions unshaded are $\frac{1}{9}$ and $\frac{2}{7}$ $\frac{1}{9} + \frac{2}{7} = \frac{7}{63} + \frac{18}{63} = \frac{25}{63}$		M1 B1 A1	2	M1 for adding given fractions B1 for use of common denominator 63 A1 cao	Н
	$1 - \frac{25}{63} = \frac{38}{63}$	38 63	M1 A1		M1 for subtracting fraction sum from 1 A1 ft from their $\frac{25}{63}$	

52	So $\frac{3}{8}$ of the residential land is used for services. $\frac{3}{8} \times 5\frac{1}{2} = \frac{33}{16} \text{ m}^2$ $(\frac{33}{16} \div 15) \times 100$ = 13.75%	13.75% of the total area is used for services.	M1 A1 M1 A1 5	3	C1 for recognising and stating $\frac{3}{8}$ of residential development is used for the services M1 for multiplying $\frac{3}{8}$ by $5\frac{1}{2}$ A1 oe M1 for finding above fraction of 15 and multiplying by 100 A1 accept 14 or 13.8	Н
53		The volume of the 2 cm dice is $2 \times 2 \times 2$ = 8 cm ³ . The volume of the 4 cm dice is $4 \times 4 \times 4 = 64$ cm ³ This is 8 times as much plastic as the 2 cm cube. The 4 cm cube will use $64 - 8 = 56$ cm ³ more plastic Or could say 8 times as much	B1 3	3	E1 for clear explanation showing how to find volumes of each cube. E1 for clear indication that the volume of the 4 cm dice is not twice as much as the 2 cm Or E2 for stating twice as large in dimensions will be 2³ as large in volume. B1 For correctly stating 56 cm³ more plastic Or for stating 8 times as much	Н
54 a		75 x 20 = 1500 oe The approximation will be smaller because each term has been rounded down	M1 A1 B1	3	M1 for a suitable rounding of each number A1 for correctly multiplying the rounded numbers. B1 for a correct justification	Н
b		$\frac{25}{5}$ = 5 oe The approximation will be smaller because the numerator has been rounded up and the denominator rounded down. Dividing a smaller number by a larger number will result in a smaller answer.	M1 A1 B1		M1 for a suitable rounding of each number A1 for correctly dividing the rounded numbers. B1 for a correct justification In each case answer marks only if the estimation is one that could be done in your head. Explanation marks only for a valid explanation but allow ft for a given approximation	
55		Three calculations that approximate to 75 e.g. 1.1×75.1 based on 1×75 24.7×3.2 based on 25×3 $147 \div 1.9$ based on $150 \div 2$	B3 B2 B2 7	2 3	B1 for each example that approximates to 75 B1 for use of multiplication and division. B1 for evidence of progression of complexity B2 for use of mathematical language and possibly connectives in answer	Н

56	The minimum area is:		M1	2	M1 for multiplying the lower bounds	Н
	$14.5 \times 18.5 = 268.25$	268.25	A1		A1 cao	
	The maximum area is less than:		M1		M1 for multiplying the upper bounds	
	$15.5 \times 19.5 = 302.25$	302.25	A1		A1 cao	
		268.25 ≤ floor area < 302.25	A1		A1 cao	
	Given lengths are 2 sf, so it would be		B1		B1 for explanation of why 2 sf should be used	
	sensible to give area to 2 sf as well.					
	Where area = $15 \times 19 = 285$					
	The sensible answer for the area is 290 m ²	290 m ²	B1		B1 cao	
			7			
57	Assume pallets are at maximum of 525 kg.		B1	2	B1 for stating maximum possible mass of pallet	Н
	A 6-axle lorry can carry up to		P1	3	P1 for dividing both load limits by maximum pallet	
	$44 \div 0.525 = 83.8$					
	So a maximum of 83 pallets per trip.	6 axle max of 83 pallets	A1		A1 cao	
	A 5-axle lorry can carry up to					
	$40 \div 0.525 = 76.2$					
	So a maximum of 76 pallets per trip.	5 axle max of 76 pallets	A1		A1 cao	
а		80 is less than 83 but more than 76, so	C2		C2 for clear explanation of correct choice	
		choose the 6-axle lorry, as this can do it			·	
		in one trip.				
b		150 pallets can be split into two loads of	C2		C2 for clear explanation of correct choice	
		75, this is less than 76, so choose 5-axle	02		or for order explanation of confect energy	
		lorry to make two trips, as this works out				
		cheaper per trip.				
С		159 can be split into two loads, 76 + 83.	C2		C2 for clear explanation of correct choice	
		So choose the 5-axle lorry to make one				
		trip, as this is cheaper per trip, and 6-axle				
		lorry to make one trip as this avoids the				
		need for a third trip.	10			

58 a		0.4 m is written to 1 dp and could have a value between 0.35 m and 0.449999 m 0.400 m is written to 3 dp and could have a value between 0.3995 m and 0.4004999 m	C2	2 3	C1 for clear explanation C1 for showing the range of possible values each could have	Н
		If the answer is required to 3 dp to provide all the information required you need to include 3 dp even if the digits are 0.	C1		C1 for clear explanation	
b		425 cm ≤ length < 435 cm	C1		C1 for communicating clearly this information	
С	13.25 ≤ runner 1 < 13.35 13.295 ≤ runner 2 < 13.305	Tenth of a metre or 10 cm.	C1		C1 for communicating clearly this information	
d		Therefore Runner 1 fastest time could be faster than Runner 2. But also true is that the slowest time for runner 1 is slower than the slowest of runner 2.	B1 B1 C2		B1 for runner 1 limits B1 for runner 2 limits C2 for clear explanation showing both possibilities	
е		If each person is measured to the nearest kg, they could each for example have a mass 100.4 kg and 7 x 100.4 > 700 kg.	B1 C2		B1 for a given example C2 for clear and concise explanation	
59	Maximum number of people turning up will be 104 (as 105 will round to 110) Assume 5% of the 280 do not turn up.		B1	3	B1 for stating maximum number of people that could turn up.	Н
	$0.05 \times 280 = 14$ Hence assume 266 seats already taken. 365 - 266 = 99 free seats		B1 B1		B1 for finding the assumed number not turning up B1 for finding assumed seats taken	
	300 - 200 = 99 liee seals					
		If the estimate of how many will fail to turn up is correct, 266 seats will be taken with advance sales. This leaves 99 seats free. If up to 99 extra people turn up, they all get seats. If 100–104 turn up, some will not get a seat.	B1 C2		B1 for finding assumed number of free seats C2 for clear explanation using all the calculated data	

60	12.25 seconds ≤ time < 12.35 seconds 99.995 m ≤ distance < 100.005 m Speed = distance ÷ time Fastest speed is longest distance divided by shortest time = 100.005 ÷ 12.25 = 8.164 m/s		B1 B1 M1 C1	2	B1 for time range B1 for distance range M1 for correct formula used for speed C1 for explanation of longest distance used with shortest time M1 for division	Н
		8.164 m/s	A1 6		A1 for suitably rounded speed (4 or 5 sf)	
61	124.5 ≤ volume < 125.5 Take cube root for lengths of sides giving 4.9933244 ≤ length < 5.0066578 Area of side will be square of lengths, giving 24.933289 ≤ area < 25.066622		B1 P1 A1 P1	2	B1 for stating limits of accuracy for volume P1 for finding cube root to find length A1 for unrounded limits to length P1 for squaring unrounded length limits	Н
		24.93 cm² ≤ area < 25.07cm²	A1 5		A1 for rounded limits to 3 or 4 sf	