Guidance on	Suidance on the use of codes for this mark scheme				
Μ	Method mark				
А	Accuracy mark				
В	Mark awarded independent of method				
cao	Correct answer only				
oe	Or equivalent				
ft	Follow through				

Qu	estion	Working	Answer	Mark	AO	Notes	Grade
1	а		(b, -a)	B1		B1 cao	В
	b		(<i>-a</i> , <i>-b</i>)	B1		B1 cao	
	с		(-b, a)	B1		B1 cao	
				3			
2			E.g.	B3	3	B1 for correct reflection of small lengths B1 for correct reflection of large lengths B1 for complete correct diagram	В
			V	3			
3	а	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-5, -2)	M1 A1		M1 process of drawing a grid to assist A1 cao	В
	b		(-b, -a)	A1 3		A1 cao	
4	а	$(4, 3) \rightarrow (-4, -3)$ in first reflection $(-4, -3) \rightarrow (-4, 3)$ in second	(-4, 3)	M1 A1		M1 finding first reflected point A1 cao	В
	b		(-a, b)	A1 3		A1 cao	
5		Divide all points by 2 to give	(1, 1) (3, 1) (3, 2)	M1 A2 3	3	M1 for method of halving all points A2 if all three correct A1 if only two are correct	В

-		1	r		r
6 a	E.g. A rectangle is a special quadrilateral that has four right angles, and the	B1	2	B1 for an accurate description	В
	The mathematically important words are: quadrilateral, right angles, equal.	B1		B1 for suitable key words such as parallel, perpendicular, right angles, equal	
b	Yes A square is a special type of rectangle, because it fits the definition in part a .	B1 B1		B1 for yes B1 for clear explanation	
ci	Two sides and two angles the same.	B1		B1 for a correct statement	
ii	All sides and angles the same.	B1		B1 for a correct statement	
iii	All sides and angles different.	B1 7		B1 for a correct statement	
7 ai	A kite has two pairs of equal adjacent sides.	B1	2 3	B1 for a correct statement.	В
ii	A parallelogram has opposite sides parallel and equal in length.	B1		B1 for a correct statement	
iii	A rhombus has four equal sides.	B1		B1 for a correct statement	
iv	A trapezium has a pair of opposite sides parallel. It is an Isosceles trapezium if the sides that are not parallel are equal in length and both angles coming from a parallel side are equal.	B1		B1 for a correct statement	
Ь	A rhombus has 4 equal sides with opposite sides parallel so this fits the definition of a parallelogram. Although opposite sides in a parallelogram must be equal, all four sides do not have to be equal so a parallelogram is not necessarily a rhombus.	B2		B1 for rhombus being parallelogram B1 for parallelogram not being rhombus	
С	There are two pairs of allied angles. Each pair adds up to 180°. So if you change the obtuse angle to acute, the other angle becomes obtuse.	B2		B1 for a correct statement B1 for use of diagrams to help	

r					
d	124° 124° 56° 124° 124° 124° 100° Irregular (see example). If it was not irregular as one angle decreases the other would increase (see part c) 94° 89° 89° 88°	B2		B1 for a correct statement B1 for use of diagrams to help	
8 a i	Suitable sketch of a quadrilateral that has: 1 line of symmetry	B1	2	B1 for a correct shape	В
ii	2 lines of symmetry	B1		B1 for a correct shape	
	3 lines of symmetry	B1		B1 for a correct shape	
iv	no lines of symmetry	B1		B1 for a correct shape	

b		1 line of symmetry – order 1 2 lines of symmetry – order 2 3 lines of symmetry – order 3 no lines of symmetry – order 1	B1 B1 B1 B1 8		B1 cao B1 cao B1 cao B1 cao	
9 a		Find the perimeter by adding up the distance around the edge. i.e. $10 + 2 + 5 + 3 + 2 + 3 + 3 + 2 = 30$ cm	B2	2 3	B1 for clear explanation B1 for also showing it done	В
b		Two different ways of working out the area of the shape for example:	B2 4		B1 for first example. B1 for second example	
10 a	Length of side = x Then, using Pythagoras, $x^2 + x^2 = 20^2$ $2x^2 = 20^2$ $x = 20 \div \sqrt{2}$ = 14.142136 Perimeter = 4x = 56.568542	56.6 cm	M1 A1 M1 A1	3	M1 for using Pythagoras' theorem A1 for answer to at least 3 dp M1 for multiplying x by 4. A1 for answer to either 1 or 2 dp	В
b		Side length x, so, using Pythagoras, $2x^2 = 8^2 = 64$ Area = $x^2 = 64 \div 2 = 32$ cm ²	M1 A1 6		M1 for process of using Pythagoras' theorem A1 for clear presentation showing given result	

11 a	Stays the same – orientation, lengths and	B1	2	B1 for a clear statement	В
	Changes – the position on any grid.	B1		B1 for a clear statement	
b	Stays the same – lengths and angles.	B1		B1 for a clear statement	
	Changes – the position on any grid, orientation.	В1		B1 for a clear statement	
с	Stays the same –lengths and angles.	B1		B1 for a clear statement	
	Changes – the position on any grid,	B1		B1 for a clear statement	
	orientation.	6			
12	E.g. The trapezium has only one pair of	B1	2	B1 for a correct statement	В
	opposite sides parallel, the parallelogram				
	The trapezium has rotational symmetry of	B1		B1 for another correct statement	
	order 1, the parallelogram has rotational	2			
	symmetry of order 2.				
13	No.	B1	2	B1 for no	В
	Need to know if it is the single angle or	B1		B1 for clear explanation	
	diagrams)				
	Д				
	30°				
	120°				
		•			
	 	2			
14	A is the only one with all the angles are	B1	2	B1 for any possible reason	В
	The same/the only equilateral triangle.	B1		B1 for any possible reason	
	only right-angled triangle.				
	C is the only scalene triangle.	B1		B1 for any possible reason	
		3			
					-

15	Split the shape as shown in the diagram. 1.2 cm $3 \times (5.5 - 3)$ $-\pi (1.2)^2$ 2×6.5 $1 \times (6.5 - 4.5)$		M1	3	M1 for process of splitting shape up	В
	Area = $3 \times 2.5 - \pi (1.2)^2 + 1 \times 2 + 2 \times 6.5$ = 7.5 - 4.52389 + 2 + 13 = 17.97611 cm ²	18.0 cm ²	M1 A1 A1 4		M1 for method of finding area of each part A1 for answer to at least 3 dp A1 for answer to either 0, 1 or 2 dp	
16 a		e.g. 1 cm × 1 cm × 24 cm 1 cm × 2 cm × 12 cm 2 cm × 3 cm × 4 cm	B3	2 3	B1 for each cuboid with a volume of 24 cm ³ .	В
b		e.g. 2 cm × 3 cm × 4 cm	B1		B1 for any a, b, c where $2(ab + bc + ac) = 52$.	
с		e.g. base 2 cm, height 12 cm base 4 cm, height 6 cm	B1 5		B1 for two lengths ad where $ab = 12$	
17	Using angles on a straight line: angle ADB = $180^{\circ} - 2x$ Using angles in a triangle in triangle ADB: $x + 34^{\circ} + 180^{\circ} - 2x = 180^{\circ}$ $-x + 34^{\circ} = 0$ $x = 34^{\circ}$ Using angles in a triangle in triangle BCD: $2x + 74^{\circ}$ +angle BCD(A) = 180° angle BCD(A) = $180^{\circ} - 2x - 74^{\circ}$ = $180^{\circ} - 68^{\circ} - 74^{\circ}$		M1 A1 M1	2	M1 for finding <i>x</i> using angles in triangle and creating an equation A1 for $x = 34^{\circ}$ M1 for using angles in a triangle to find angle BCD	В
	= 38°	Angle BCA = 38°	A1 4		A1 cao	

18	A is the only 6 sided shape/the only one with all sides the same shape.	B1	2	B1 for a valid reason	В
	B is the only one not a prism/the only pyramid.	B1		B1 for a valid reason	
	C is the only one with a rectangular base.	B1 3		B1 for a valid reason	
19	For example, split the compound shape into different shapes. Work out the area of the large rectangle and subtract the areas that have been cut away.	B1 B1 B1	3	B1 for first way. B1 for another way using a different shape to the first. B1 for a different way to the first two	В

20 a b		False The missing lengths of the diagram have not been found to add on to the lengths given. False The parts have been assumed to have the same area, but they do not.	B1 B1 B1 B1 4	2	B1 for falseB1 for clear explanationB1 for false.B1 for clear explanation	В
21	Based on the diagram $3 \times 4 = 12$ tables Room around length of tables is $20 - (4 \times 3) = 8$ m $8 \text{ m} \div 5$ gaps = 1.6 m which is more than 1.5 m Room around width of tables is $18 - (4 \times 2) = 10$ m $10 \text{ m} \div 4$ gaps = 2.5 m which is more than 1.5 m. So plenty of space around each table. 12×7 people = 84 people can be seated	So based on the layout there would be enough seats.	M1 A1 M1 A1 A1 A1	3	M1 for process of looking for a suitable design and testing it A1 for a solution that works A1 for showing the solution works M1 for process of finding out number of people who can be seated A1 for correct number of people for the layout A1 for complete solution well explained Allow variations based on variations that fit with criteria, for example either side of stage	Μ
22		Height of cylinder and radius or diameter of cross section.	B1 B1 2	2	B1 for height B1 for radius	М

	-	-			-	
23 a	42° – 25°	17°	M1 A1	3	M1 method of subtracting A1 cao	М
b	$\frac{AB}{70} = \cos 25^{\circ}$		M1		M1 correct trig statement	
	AB = 70 × cos 25° = 63.441545	63.4 m	A1		A1 63.4 to either 0, 1 or 2 dp	
с	$\frac{CB}{70} = \sin 25^{\circ}$		M1		M1 correct trig statement	
	CB = 70 × sin 25° = 29.583278	29.6 m	A1		A1 63.4 to either 0, 1 or 2 dp	
d	$\frac{BD}{AB} = \tan 42^{\circ}$ BD = AB × tan 42° = 57.123024		M1 A1		M1 correct trig statement A1 63.4 to either 0, 1 or 2 dp	
	CD = BD – BC = 27.539745	27.5 m	M1 A1 10		M1 for process of subtracting A1 for 27.5 to either 0, 1 or 2 dp	
24 ai		80π m ² : correct Area = $(8^2 \times \pi) + (4^2 \times \pi)$ = $64\pi + 16\pi = 80\pi$	B1	2 3	B1 for correct.	М
ii		208π m ² : squared values on diagram multiplied by π and added	B1		B1 for valid reason	
iii		24π m ² : multiplied radii by 2 instead of squaring them	B1		B1 for valid reason	
iv		48π m ² : subtracting $4^2\pi$ from $8^2\pi$ instead of adding.	B1 4		B1 for valid reason	

					1
25		B1 B1 B1	3	B1 for process of finding triangle with height 4 times greater than the rectangle B1 for constructing line bisector of base of rectangle B1 for stepping off 4 heights of rectangle B1 for completing correct triangle	Μ
26 a i	Тпр	 B1	2	B1 for a clear diagram	M
20 4 1		Ы	2		IVI
ii	True	B1		B1 for a clear diagram	
iii	False. Two obtuse angles will add up to more than 180° which is more than the sum of the angles in a triangle.	B1		B1 for clear explanation	
iv	True	B1		B1 for a clear diagram	
v	False. Two right angles add up to 180° which is the sum of the angles in a triangle, so the third angle would have to be 0°.	B1		B1 for clear explanation	
b	If you draw a line between two parallel lines, the two allied angles formed add up to 180°, which gives nothing left for a third angle.	B1 B1		B1 for clear explanation B1 for clarity of the communication	
	č	7			

27 a	$x = 180^{\circ} - (90^{\circ} + 15^{\circ})$		M1		M1 using angles in a triangle	М
	$= 180^{\circ} - 105^{\circ}$	75°	A1		A1 cao	
b	Angle ACD = 15° Alternate angles BCD = 90° + 15°	105°	B1 M1 A1 5		B1 for recognition of alternate angles M1 for using angles in a triangle and adding A1 cao	
28		Their interior angles are 120° and 3 ×	B1	2	B1 for a clear explanation	М
		This is the total of the angles around a point.	1			
29	5 m x 1.5 m Using Pythagoras		M1	3	M1 for process of applying Pythagoras theorem	М
	$x^2 + 1.5^2 = 5^2$		M1		M1 for correct Pythagoras statement	
	$x^{2} = 25 - 2.25$ $x = \sqrt{22.5} = 4.734165$	4.73 m	A1 A1 5		A1 for $\sqrt{22.5}$ A1 for 4.73 correct to 2 or 3 dp	
30 a		Scale factor is 3	B1	2	B1 cao	М
b		The side lengths of A are one-third the side lengths of C, so the scale factor will		3	1	
		be $\frac{1}{3}$.	B1		B1 for scale factor $\frac{1}{3}$	
		Where the lines cross is the centre of enlargement, this point is (-18, 14)	B1 B1 4		B1 for explaining the lines B1 for correct centre.	
31		The sum of the areas of the two smaller semicircles is equal to the area of the larger semicircle.	B1 1	2 3	B1 for a clear explanation	Н
32		AC is 5 cm because, triangle ABC is a 5, 12, 13 special right-angled triangle. Triangle ACD is a right-angled triangle	B1 B1	2 3	B1 for explaining AC as being 5 cm B1 for completing the explanation for DC to be 4 cm	Н
		and a 3, 4, 5 triangle, giving CD the length 4.	2			

33	(Horizontal distance in air) ² = $300^2 + 500^2$ = 340 000		M1	2	M1 for sorting one length by Pythagoras	Н
	Horizontal distance in air = $\sqrt{340\ 000}$ = 583.0952 m	583 m	A1 A1 3	-	A1 for $\sqrt{340\ 000}$ A1 for answer correct to 1, 2 or 3 sf	
34		Diameter 5 cm, height 13 cm	B1	2	B1 for first correct set	Н
		Diameter 13 cm, height 5 cm	B1 2		B1 for second correct set	
35 a	4x = 3(x+3) $4x = 3x + 9$		M1	2	M1 for process of setting up equation	Н
	x = 9 So perimeter of square is $4 \times 9 = 36$ cm	36 cm	M1 A1	5	M1 for $x = 9$ A1 cao	
b	$y = \sqrt{9^2 + 9^2}$ $= \sqrt{162}$		M1 A1		M1 for using Pythagoras' theorem A1 either surd form or answer	
	12 z		B1		B1 for creating suitable diagram to assist	
	$ \begin{array}{l} \hline 0.5 \times 12 = 6 \\ z^2 = 12^2 - 6^2 \\ z^2 = 144 - 36 = 108 \\ z = \sqrt{108} \end{array} $	So <i>y</i> is greater	M1 A1 B1 9		M1 for use of Pythagoras' theorem A1 for surd form or answer B1 cao provided evidence of calculation seen	
36		Each length is a multiple of 2.5, so by dividing by 2.5 we can see the ratio of all the sides. This gives us 3, 4, 5 and 6 The sides in the ratio 3, 4 and 5 will make a right-angled triangle, hence the one to be left out is the one that is $6 \times 2.5 = 15$	M1 A1 A1	2	M1 for process of finding ratio of sides A1 for explaining why the three chosen fit A1 for 15 cm provided explanation alongside	М
		cm. $2.3 = 13$	3			
37		If all the shapes are congruent then they are identical in size, so they must have tessellated, all joining together and leaving no gaps.	B1	2	B1 for clear explanation	
			1			
38		Find the factor pairs of 60 to give $1 \times 60, 2 \times 30, 3 \times 20, 4 \times 15, 5 \times 1,$ 6×10	M1 A1 2	3	M1 for process of looking for factor pairs A1 for all six stated	М

39 DE = 6 cm, CH = 7 cm, CG = 8 cm Side length of the square is 10 cm. Subtract area of triangles DEH, HCG, AEF and BFG from the area of the square. Area of DEH = $0.5 \times 3 \times 6 = 9 \text{ cm}^2$ Area of HCG = $0.5 \times 7 \times 8 = 28 \text{ cm}^2$ Area of AEF = $0.5 \times 4 \times 4 = 8 \text{ cm}^2$ Area of BFG = $0.5 \times 2 \times 6 = 6 \text{ cm}^2$ Area of square = $10 \times 10 = 100 \text{ cm}^2$ So area of shaded shape = $100 - (9 + 28 + 8 + 6) = 100 - 51$ = 49 cm^2	Area = 49 cm ²	M1 M1 M1 A1 4	3	M1 for process of finding missing lengths and marking them on diagram M1 for method of finding area of a triangle M1 for subtraction of areas A1 cao	Μ
40The area of the garden is 6.5×4.8 = 31.2 m^2 The area of the small blue squares are 0.8^2 = 0.64 m^2 Four of them make one large blue square There are the equivalent of 12 small blue squares to be covered by topsoil. Area = $12 \times 0.64 = 7.68 \text{ m}^2$ The volume of soil needed is $7.68 \text{ m}^2 \times 0.5 \text{ m} = 3.84 \text{ m}^3$ Number of bags of topsoil needed = $3.84 \div 0.75 = 5.12$ Assume she will need 5 bags. So will need about 5 bags Cost of topsoil = $5 \times 73.30 = £366.50$ 4 slabs that cover $4 \times 0.64 = 2.56 \text{ m}^2$ The grass needed is to cover $31.2 - (7.68 + 2.56) = 20.96 \text{ m}^2$ Use approximately 50 g per square metre. $50 \text{ g} \times 20.96 = 1048 \text{ g}$ So assume $2 \times 500\text{ g}$ bags will be needed which will cost $2 \times £19.99 = £39.98$ Total cost will be £366.50 + £39.98 But note no cost given for the paving stones.	£406.48	M1 M1 A1 A1 A1 B1 B1 A1 M1 M1 A1 B1 A1 A1 B1 A1 B1 16	3	M1 for process of finding area of garden M1 for finding area of shaded squares A1 for 7.68 A1 for 3.84 M1 for dividing volume by 0.75 A1 for 5.12 B1 for stating 5 bags needed B1 for £366.50 A1 for 2.56 M1 for process of finding area of grass M1 for multiplying area by 50 A1 for 1048 B1 for stating 2 bags needed A1 for 39.98 A1 cao B1 for explaining that the stones are not included in the price.	Μ

41	Sometimes An example of when not true and an example of when true Shape A: perimeter = 14 cm, area = 10 cm^2 Shape B: perimeter = 16 cm, area = 12 cm^2 Shape C: perimeter = 18 cm, area = 8 cm^2 Statement true for A and B, but false for B and C 5 cm A 2 cm 6 cm B 2 cm 8 cm C 1 cm	B1 B2 B1	2	B1 for sometimes B1 for example that shows it can be true B1 for example that shown it can be false B1 for clear communication of both	Μ
42	True Demonstration of proof of area triangle equal to half area of rectangle true also for non-right angle triangle. B A G CA G CA rea of triangle ABT = half of AEBT = half of 36 cm ² = 18 cm ² Area of triangle CTB = half of CTBF = half of 12 cm ² = 6 cm ² Area of triangle ABC = 18 + 6 = 24 cm ² $= \frac{1}{2} \times 4 \times 12$	4 B1 M1	2 3	B1 for true B1 for clear explanation M1 for concise communication with clear diagrams	Μ

43	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	A rotation of 90°anticlockwise around point (2, 2)	M1 A1 B1	3	M1 for a process of finding the centre of rotation. A1 for indicating 90° anticlockwise (or 270° clockwise) A1 for indicating centre of rotation as (2, 2) B1 for full, clear description providing all information needed	Μ
44	Area of front and back = $2 \times 12 \times 25$ = 600 m ² Area of sides = $2 \times 12 \times 12 = 288$ m ² Area of openings = $40 \times 2 \times 1 = 80$ m ² Total area to be painted = $600 + 288 - 80$ = 808 m ² With 2 coats of paint area = 2×808 = 1616 m ² Number of litres of paint needed = $1616 \div 16 = 101$ litres. Number of cans of paint = $101 \div 10 = 10.1$ So 11 cans are needed. Cost of paint = $11 \times £25 = £275$ Assume painters work 5 days per week. Number of days = $2 \times 5 = 10$ Cost of painters = $10 \times 3 \times 120 = £3600$ Total cost = £275 + £3600 + £500 = £4375 Add 10%: £4375 \times 1.1 = £4812.50 Add 20% VAT: £4812.50 $\times 1.2 = £5775$	The builder should charge the council £5775.	M1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 C2 14	2 3	 M1 for correct formula for area of rectangle M1 for correct method of finding total surface area A1 for 808 cao M1 for correct method of finding number of cans A1 for correct number of cans used M1 for method of finding cost of cans A1 for 275 cao M1 for method of calculating cost for two days A1 for 3600 cao A1 for 4375 cao M1 for correct calculation of 10% M1 for correct total cost 5775 C1 for clear explanation marks with structure and technical use of language in explanation and C1 for stating any necessary assumptions 	Μ

45 a	Area of face = 4^2 = 16 m ²		M1	3	M1 for the correct method of finding area of a rectangle	M
	Area of circle = πr^2		M1		M1 for correct method of finding area of a circle	
	Using π = 3.142, area = π 1.2 ²					
	$= 4.52448 \text{ m}^2$		A1		A1 for correct area of circle	
	Remaining surface area of front face – 16 –		Δ1		A1 for correct area of face with circle	
	A FOAAO AA AZEFO m^2					
	$4.52448 = 11.47552 \text{ m}^2$					
	Total remaining surface area:					
	front and back =		A1		A1 for correctly combining front and back	
	2 × 11.47552 = 22.95104 m ²					
	Area of other four sides = $4 \times 16 = 64 \text{ m}^2$		A1		A1 for correct area of the other 4 sides	
	Total $= 64 \pm 22.95104 = 86.95104 \text{ m}^2$	87.0 m ²	Δ1		A1 for correct total area, rounded to 2, 3 or 4 sf	
	10101 = 04 1 22.00104 = 00.00104 m	67.6 m	~ ~ ~			
h	Volume of original subside 43 64 m ³		N/1		M1 for correct method for finding values of outpo	
a	Volume of original cubold = 4° = 64 m°				with for correct method for finding volume of cube	
	Volume of cylinder = πrh		A1		A1 for 64	
	$=\pi r^2 4$		M1		M1 for correct method for finding volume of cylinder	
	$= 4.52448 \times 4$					
	$= 18.09792 \text{ m}^3$		A1		A1 for a correct volume of cylinder (any rounding)	
	Remaining volume = $64 - 18.09792 =$, (, , , , , , , , , , , , , , , , , ,	
	45.90208 m^3	45.9 m ³	Δ1		A1 for correct total volume, rounded to 2.3 or 4 sf	
	40.00200 11	-0.5 m	~ ~ ~			
-					M4 for dividing total outside surface by O	
С	Light blue paint = outside area ÷ coverage		IVI1		Will for dividing total outside surface by 9	
	of 1 litre of paint = $87 \div 9 = 9.666$	Light blue = 9.7 litres	A1		A1 for correct answer rounded to 1,2,3 or 4 sf	
	Surface area inside cylinder = $2\pi rh$		M1		M1 for correct method of finding curved surface area	
	2 × 3.142 × 1.2 × 4					
	$=30.1632 \text{ m}^2$		A1		A1 for a correct surface area (any rounding)	
	$30\ 1632 \pm 9 = 3\ 3515$	Dark blue – 3.4 litres	Δ1		A1 for correct answer to 2.3 or 4 sf	
	00.1002 . 0 = 0.0010					
			17			
46		Yes, he is correct	B1	2	B1 for clear communication that he is correct	М
-		This is one of the conditions for being		3		
		able to draw a triangle	-	Ŭ		
		able to thaw a thangle	1			
47			B4	3	B1 for each different possible triangle shown and	М
		\wedge .	51	Ŭ	clearly labelled	
		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
		10 10 10 10				
			4			
48	Draw the locus.	d The locus is none of these as it is a	B1	3	B1 for stating d is the only correct option	M
		point.	B1		B1 for a clear explanation of why	
	Δ 5 cm 5 cm R		M1		M1 for clear communication using diagrams to illustrate	
					answer	
			2			
			3			

-							
	49	Angles in a in triangle add up to 180° You can split any quadrilateral into two triangles			2		М
				B1 M1		B1 for clear explanation M1 for communication with clear diagram	
				B1		B1 for showing inter angles of quadrilateral = $2 \times 180^{\circ}$	
		Therefore the interior angles of any		1			
		quadrilateral = $2 \times 180^{\circ}$		3			
	50		A line of symmetry has the same number of vertices on each side of the line so	B2	2	B1 for line of symmetry and number of vertices link B1 for reference to even number of vertices	М
			therefore an even number of sides.	M1		M1 for use of diagram to illustrate answer	
				3			
	51 a		Suitable diagram, e.g.	B1	2	B1 for a correct diagram	М
					3		
	b		Suitable diagram, e.g. as part a	B1		B1 for a correct diagram	
	С		In a parallelogram opposite sides are	B1 M1		B1 for a correct diagram of a parallelogram M1 for a correct explanation alongside the diagram	
			ln a trapezium at least one set of				
			opposite sides are parallel.				
			Therefore every parallelogram is also a				
			4 4				
				4			
	52		Always true	B1	2	B1 for always true	
			For any polygon to go around the outside	B1		C1 for a satisfactory explanation	
			to get back to where you started.				
			Therefore the external angles of every				
			polygon sum to 360°.	3			

53	Ratio = 6 : 5 : 7 6 + 5 + 7 = 18 Sum of the angles in a triangle = 180° So 180° ÷ 18 = 10° Therefore the angles are: $6 \times 10^\circ = 60^\circ$ $5 \times 10^\circ = 50^\circ$ $7 \times 10^\circ = 70^\circ$ Check $60^\circ + 50^\circ + 70^\circ = 180^\circ$	60°, 50°, 70°	M1 B1 M1 B3 M1 7	2	 M1 for summing parts of ratio B1 for clear statement regarding angle sum of triangle M1 for dividing 180° by 18 B1 for each correct angle found M1 for showing the checking of answer sum to 180°. 	
54 a		Interior angle of a equilateral triangle is 60° Interior angle of a square is 90° Interior angle of a regular hexagon is 60° All three are factors of 360° so these shapes will tessellate around a point. This is not true for other regular polygons as their interior angles are not factors of 360.	M1 M1 B1	2	M1 for clear explanation of all three shapes M1 for use of clear diagrams alongside the explanation B1 for clear explanation	
b		Interior angle of a regular octagon is 135° Interior angle of a square is 90° Using a similar argument to part a : $2 \times 135^{\circ} + 90^{\circ} = 270^{\circ} + 90^{\circ} = 360^{\circ}$	B1 M1 5		B1 for clear explanation M1 for use of clear diagrams alongside the explanation	
55		All three sides (SSS) Two sides and the included angle (SAS) Two sides and another side angle (SSA) Two angles and a side (ASA, or AAS)	B4 4	3	B1 for each correct statement	М

56	a	True In a parallelogram opposite sides are parallel. In a rhombus opposite sides are parallel and all sides are the same length. So a rhombus is a type of parallelogram. In a square all sides are the same length. So a rhombus with right angles must be a square.	B1 B1 B1	3	B1 for true B1 for clear explanation B1 for clear explanation	M
	b	True A rhombus must be a parallelogram (part a) but a parallelogram does not all sides the same length so it does not have to be	B1 B1		B1 for true B1 for clear explanation	
		a rhombus. $\alpha = 90^{\circ}$	M1		M1 for clear use of diagram alongside the explanation	
	с	True Using the diagram of a trapezium above, you see each pair of angles are allied angles, each pair adding up to 180°, so each pair can only have a maximum of one acute angle, hence the whole shape can have no more than two acute angles.	B1 B1 M1		B1 for true B1 for clear explanation M1 for clear use of diagrams alongside the explanation	
	d	True A quadrilateral can have three acute angles, e.g. 80°, 80° and 120° 80° 80° 80°	B1 B1 M1		B1 for true B1 for clear explanation alongside a clear diagram M1 for clear use of a correct diagram	
			12			

57	Look at what sides and/or angles you have been given and what you need to calculate. Use Pythagoras, theorem when you need to work out one side lengths and you know the other two side lengths. Otherwise use sine, cosine or tangent when you need to work out an angle or a side.	B1 B1 2	3	B1 for clear Pythagoras explanation B1 for clear right angled trig explanation	Μ
58 ai ii bi ii	A suitable simple reflection A mirror line that is parallel to one of the sides of the shape A suitable simple rotation A centre of rotation that is not on an extension of one of the sides of the shape.	B1 M1 B1 M1 4	2 3	B1 for a diagram of a simple reflectionM1 for a clear explanationB1 for a diagram of a simple rotationM1 for a clear explanation	М

59 a	The leng of the sh The ang For exam 	ths change as does the position ape es stay the same. ple Fx C C Fx C C C C C C C C C C C C C	31 31 31	2	B1 for clear statement B1 for clear statement B1 for use of a clear example	В
b c	Scale fac Find the choosing and their joining th and the o image. W of enlarg Work out the lengt length of original s OR by di image fro the dista the origin enlargen	tor and centre of enlargement. centre of enlargement by two points on the original shape image points. Draw straight lines ese points on the original image corresponding points on the /here the lines cross is the centre ement. the scale factor found by dividing h of a side on the image by the the corresponding side on the hape. viding distance of a point on the om the centre of enlargement by nce of a corresponding point on hal shape from the centre of hent. 7	31 31 31 31 31 7		B1 cao B1 cao B1 for clear explanation B1 for clear explanation	

60 a		When a shape has been translated the orientation is the same. When it has been reflected its orientation is different.	B2 M1	2	 B1 for comment about orientation staying the same in translation B1 for comment about orientation being different in rotation M1 for a clear diagram alongside the explanation 	
b		Rotating a rectangle about its centre: all the vertices move and the shapes remain superimposed on each other.	B1 M1		B1 for clear explanation M1 for good diagram alongside explanation	
		Rotating about one of its vertices: all the other vertices move and as the angle increases the shapes will no longer be superimposed.	B1 M1		B1 for clear explanation M1 for use of diagram to illustrate explanation	
61	Cross-sectional area is a quarter of circle with radius 1.5 cm and a rectangle 1.5 cm by 6.5 cm Area of quarter circle = $\frac{1}{4}\pi 1.5^2$		M1	2 3	M1 for method of finding area of the quadrant	Μ
	4 = 1.7671459 cm ² Area of rectangle 1.5 × 6.5 = 9.75 cm ² Total area = 1.7671459 + 9.75 = 11.517146 cm ²		A1 B1 B1		A1 for any rounding to 4 or more sf B1 for 9.75 B1 for any rounding to 4 or more sf	
	Total volume of wood =11.517146 x 12 000 = 138 205.75 cm ² Convert this to m ² by dividing by 1 000 000 = 0.13820575 m ²	138 000 cm² or 0.14 m²	M1 A1 6		M1 for method of finding volume A1 for correct answer rounded to either 2 or 3 sf Accept alternative cubic metre answer given correctly to 2 or 3 sf	

62 a b	Triangle 11 will move round to sit next to face 13, square 4 will move round to be next to face 12, leaving face 2 opposite to	14 faces: the same as the number of polygons in the net.13	B1 B1 B1 B1 M1	2	 B1 for the 14 faces B1 for clear explanation B1 for face 13 B1 for clear explanation M1 for use of diagrams alongside the explanation 	
с	Tace 13.	I would create the shape first then draw what I see from above as the plan and from the side as the elevation. Once created, I can measure the lengths and angles concerned.	B2 7		B1 for an explanation of the plan B1 for explanation of elevations	
63	Circumference of wheel = πd = $\pi \times 68$ = 213.6283 cm 10 km = 10 × 1000 × 100 cm = 1 000 000 cm Number of revolutions = 1 000 000 cm ÷ 213.6283 cm = 4681.028	4681 complete rotations	M1 A1 B1 M1 A1 5	2	M1 for method of calculating circumference of wheel A1 for full unrounded answer B1 for use of 1 000 000 as a conversion factor either way round M1 for correct division with common units A1 for cao	М
64	$ \begin{array}{c} B & 3 \text{ km} & C \\ 5 \text{ km} & x \\ A \\ x^2 = 5^2 + 3^2 = 34 \\ x = \sqrt{34} \\ = 5.8309519 \end{array} $	<i>x</i> = 5.8 km	B1 M1 M1 M1 A1 5	2	 B1 for use of a correct diagram M1 for explanation of how and why using Pythagoras' theorem M1 for correct application of Pythagoras' theorem M1 for correct method of finding hypotenuse A1 for correct rounding to 2 or 3 sf 	М

65			B1	2	B1 for clear correct diagram used	М
65	Chimney 28° 37° Let $c =$ the height of the chimney $\frac{x}{c} = \tan 53^{\circ}$ $x = c \tan 53^{\circ}$ $30 + x = c \tan 62^{\circ}$ $30 + x = c \tan 62^{\circ} - 30$ Combining equations to eliminate x : $c \tan 53^{\circ} = c \tan 62^{\circ} - 30$ Rearrange to get c on one side of the equation $30 = c \tan 62^{\circ} - c \tan 53^{\circ}$ $30 = c (\tan 62^{\circ} - \tan 53^{\circ})$		B1 M1 A1 M1 M1 M1	2	 B1 for clear correct diagram used M1 for correct use of trig with <i>x</i>, <i>c</i> and angle 53° or 37° A1 for correct equation having <i>x</i> as subject M1 for correct use of trig with <i>x</i>, <i>c</i> and angle 62° or 28° A1 for correct equation in format to combine with first equation M1 for correctly eliminating <i>x</i> M1 for correct equation with <i>c</i> as subject 	Μ
	$c = \frac{30 + x}{c}$ 30/(tan 62° – tan 53°) = 54.182761 m	54.2 m	A1		A1 for correct answer rounding to 2 or 3 sf	
			8			
66 a		It is always true	B1	2	B1 for always true	М
b		If you include the option of $1 \times 1 \times a$ then you can build a cuboid for any number of cubes. You can only make one cuboid for a prime number of cubes because this is the only option as the only factors of a prime number or 1 and itself	B1 B1		B1 for clear explanation B1 for clear explanation using primes	
с		You can make more than one cuboid if the individual number of cubes has more than 3 factors not including itself E.g. 30 (factors 1, 2, 3 and 5)	B1 B1 5		B1 for clear explanation for when more than 1 cuboid could be made B1 for use of examples to illustrate the explanations	

67 a		Yes	B1 B1	2	B1 for yes B1 for clear diagram or explanation	М
b		Yes	B1 B1		B1 for yes B1 for clear diagram or explanation	
C		Yes	B1 B1		B1 for yes B1 for clear diagram or explanation	
		Yes	B1 B1		B1 for yes B1 for clear diagram or explanation	
68	If cuboid has dimensions x, y and t The surface area = $2(xy + xt + yt)$	False	B1 M1	2	B1 for false M1 for surface area with either specific lengths or a	Н
	Volume = xyt Double the lengths gives dimensions as $2x$,		M1		generalisation M1 for volume with either specific lengths or a	
	So surface area = $2(2x \times 2y + 2x \times 2t + 2y \times 2t)$ × $2t$		M1		M1 for showing correct follow through of double the lengths	
	= 2(4xy + 4xt + 4yt) = 8(xy + xt + yt) Which is 4 times the first area		B1		M1 for a correct statement of surface area with their	
	And $V = 2x \times 2y \times 2t$ = 8rvt		B1 B1		B1 for 4 times area B1 for a correct statement of volume with their data	
	which is 8 times the first volume.		B1		B1 for 8 times volume	
			0			

69			M1	2	M1 for clear diagram	Н
	22.5					
	Consider just half the shape, where x is a					
	Use Pythagoras $x^2 = 10^2 + 22.5^2 = 606.25$		M1		M1 for correct statement using Pythagoras' theroem	
	$x = \sqrt{606.25}$		M1 A1		M1 for correct method of applying Pythagoras	
	= 24.622145		A1		A1 for double the initial x	
	Two lengths of string will be 49.244289 cm Subtract the original 45 cm	1.2 cm	Δ1		A1 for rounded answer of either 2 or 3 sf	
	Gives extension as 4.244289	7.2 011	6		AT for founded answer of either 2 of 3 st	
70	Let AC = x , the new length of road. B 6.3 km C 4.9 km x		M1	2	M1 for use of a diagram to assist the explanation	Н
	Using Pythagoras $x^2 = 4.9^2 + 6.3^2 = 63.7$		M1		M1 for clear statement of Pythagoras' theorem	
	$x = \sqrt{03.7}$ = 7.981228		M1		M1 for correctly applying Pythagoras' theorem	
	Current distance = $4.9 + 6.3 = 11.2$ km		A1 B1		A1 for full answer B1 for 11.2	
	Saving = 11.2 – 7.981228		M1		M1 for subtracting lengths	
		3.22 km	A1 7		A1 for correct rounding to 2 or 3 sf	

71		Yes	B1	2	B1 for ves	Н
		$\Theta = \sin^{-1} \frac{12}{15} = 53.13$ = 53° to the nearest degree. = 50° to 1 sf 12 cm has range of 11.5 cm to 12.5 cm 15 cm has range of 14.5 cm to 15.5 cm Smallest ratio for sine is $\frac{11.5}{15.5}$ sin ⁻¹ 0.7419, $\Theta = 47.9^{\circ}$ Largest ration for sine is $\frac{12.5}{14.5}$ sin ⁻¹ 0.8621, $\Theta = 59.5^{\circ}$ So there are values that round to 12 cm and 15 cm which will give an angle that rounds to 50°.	M1 M1 B1 B1		M1 for showing that using trig and rounding can give 50° M1 for showing the ranges of lengths of the sides B1 for showing the least possible value of the angle given the ranges. B1 for final summary explaining that it is possible	
72	$AB^{2} = 2^{2} - 1^{2}$ = 4 - 1 = 3 $AB = \sqrt{3}$	√3 cm	M1 A1 M1 3	2	M1 for correct statement of Pythagoras theorem A1 for 3 M1 for a clear communication of the method used	Н
73	B A C	$\begin{pmatrix} 6\\2 \end{pmatrix}$	B1 B1 2	2	B1 for correct diagram B1 for correct vector	Н
74		No To work out the return vector, multiply each component by -1 The return vector is $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	B1 B1 B1 3	2	B1 for noB1 for a clear explanation of what Joel should have done.B1 for correct vector	Н