Guidance	Guidance on the use of codes for this mark scheme							
М	ethod mark							
Α	curacy mark							
В	Mark awarded independent of method							
oe	Or equivalent							
ft	Follow through							
cao	Correct answer only							

Qu	estion	Working	Answer	Mark	AO	Notes	Grade
1	a		D = 7w	B1	3	B1 oe	В
	b		C = pn	B1 B1		B1 oe	
	c d		$Y = \frac{m}{12}$	B1		B1 oe B1 oe	
	e			B1		B1 oe	
	f		P = 100D $A = lw$	B1		B1 oe	
			P = nl	6			
2	а		C = 80h	B1	3	B1 cao	В
	b		C = 80h + 50	B1		B1 cao	
				2			
3	а		No	B1	2	B1 for No and a reason	В
			To be able to work out what the number				
			thought of, you need to know the answer.				
	b		Yes	B1		B1 for Yes and a reason	
	-		Because I can write an equation from the				
			information and solve it.				
			x + 15 = 26	B1		B1 for showing the equation and the solution	
			so <i>x</i> = 11	3			
4			For example, in the rule pay =15 x	B1	2	B1 for an explanation of why it is possible for more than	В
			hours.	D4		one calculation to match with the same rule	
			As hours varies, so will the calculation to calculate pay.	B1		B1 for using an example to go alongside the explanation	
			Yes, there will be others, there will be	B1		B1 for stating Yes there will be more, and qualifying this	
			hundreds of different possible			, , , ,	
			calculations.	3			
5		<i>y</i>	We use (x, y) to describe the position,	B1	2	B1 for clear explanation	В
		A (2, 3)	where the first part, x , is along the x -axis.				
		2	Then the second part, <i>y</i> , is along the <i>y</i> -axis.				
		B (3, 2)	Example, e.g.	B1		B1 for a clear example illustrated with a sketch graph	
			The convention for point A is (2, 3). If we			graph	
			didn't have the convention then we could				
			use (3, 2) but that could be confused now				
_			with point B.	2	-		
6	а		Yes	B1	2	B1 for Yes with an example to illustrate	В
			For example we could write as $2x = y - 6$ Rearranging an equation.	B1		B1 for correct language	
			Troditaligning all equation.	, D,		Di loi concocianguago	
	b		Yes	B1		B1 for yes and a reason	
			The first equation has been divided by 2				
			throughout.	3			

7		Substitute $x = 3$ in the equation to give $y = 3 + 2 = 5$ so when $x = 3$, $y = 5$, hence $(2, 6)$ is not on the line or The constant term is 2 so the line crosses the <i>y</i> -axis at the point $(0, 2)$. Then for every point across it goes up 1 (gradient is 1) so by the time $x = 3$, y will $= 5$.	B1	2	B1 for a clear example	В
8 a		Is the sum of the cost of the CDs plus the coffee and the taxi less than £70?	B1	3	B1 for good question	В
b	Money spent = $2 \times £14.99 + 2 \times £2.50 + (12 \times £0.80 + £2.50)$	Money left = £70 – money spent	B1		B1 for a correct formula that could be used	
	= £29.98 + £5 + (£9.60 + £2.50) $= £34.98 + £12.10 = £47.08$ Money left = £70 - £47.08 $= £22.92$	This is less than £70 so she can afford the taxi.	M1 A1 B1		M1 for the process of calculating how much has been spent A1 cao B1 for clear, complete solution with correct answer	
			5			
9		Look for the words that will represent variables and if possible, use appropriate letters to represent those variables. e.g.	B1	2	B1 for an explanation of how to link a formula expressed in words to a formula expressed algebraically	В
		Area = height multiplied by breadth Formula could be $A = hb$	B1		B1 if a suitable example has been included	
10 a		2n means 2 times n while $n + 2$ means add 2 to n .	2 B1	2	B1 for clear explanation	В
b		3(c + 5) means add 5 to c and then multiply the answer by 3, $3c + 5$ means multiply c by 3 and then add 5 to the answer.	B1		B1 for clear explanation	
С		n^2 means multiply n by itself, $2n$ means multiply n by 2.	B1		B1 for clear explanation	
		. 17	3			
11	Perimeter = $2 \times l + 2 \times 3l$ = $2l + 6l = 8l$ So $8l = 48$ l = 6 cm		M1 A1	3	M1 for using perimeter formula A1 cao	В
	Area = length × width = $l \times 3l$ = $6 + 3 \times 6$		M1		M1 for area formula	
	= 6 + 18 = 24 cm ²	24 cm ²	A1		A1 ft	
	1		•			1

12	(32 24)		M1	3	M1 for the correct process of working out C	В
'-	$\frac{(32-24)}{4}=8\div 4=2$		1011		Without the contest process of working out o	
	$24 - 2 \times 4 = 24 - 8$	C = 16	A1		A1 cao	
	24 - 2 x 4 = 24 - 6 = 16		2			
13	y ₁	Plot the three points and draw the two	B1	2	B1 for clear explanation	В
	B (2, 8) D 7	sides. You can then complete the missing sides of the rectangle to complete the shape as shown in the diagram. Hence find the fourth vertex as in the	B1 B1	3	B1 for including a sketch alongside the explanation B1 for correctly indicating (4, 8)	
	5 4 7 1 1 3 2 4 3 4 5 3 x	diagram as (4, 8).				
			3			
14	Let the smaller number be <i>n</i> , then the next		B1	2	B1 for stating starting points	В
	even number will be $(n + 2)$.			3		
	n + (n + 2) = 50		M1		M1 for method of setting up the equation	
	2n + 2 = 50 2n = 48					
	$ \begin{array}{c} 2n = 48 \\ n = 24 \end{array} $					
	The lower number will be 24 so the larger		A1		A1 for solving for the first number	
	number will be 26.	26	A1		A1 cao	
			4			
15		Example 1	B1	2	B1 for first formula that works	М
		As $24 = 6 \times 4$	B1		B1 for clear explanation of how it was found	
		$= 6 \times 2^2$				
		$t = ba^2$				
		Will give 24 when $b = 6$ and $a = 2$				
		Example 2	B1		B1 for second formula that works	
		As 24 = 3 × 8	B1		B1 for clear explanation of how it was found	
		$= 3 \times (2 + 6)$				
		t = 3(a + b)				
		Will give 24 when $a = 2$ and $b = 6$	4			

16 a	5(c + 4) = 5c + 20 Feedback 'Don't forget to multiply out both terms in the brackets.'	M1 A1	2	M1 for correctly expanding the brackets A1 for suitable feedback	М
b	6(t-2) = 6t - 12 Feedback 'Don't forget $6()$ means multiply both terms by 6 .'	M1 A1		M1 for correctly expanding the brackets A1 for suitable feedback	
С	-3(4 - s) = -12 + 3s Feedback 'Don't forget -3() means multiply both terms by 6 and a minus × minus =	M1 A1		M1 for correctly expanding the brackets A1 for suitable feedback	
d	15 - (n - 4) = 15 - n + 4 = 15 + 4 - n $= 19 - n$	M1		M1 for correctly expanding the brackets	
	Feedback 'Don't forget - $(n-4)$ means multiply each term in the bracket by -1 and that the $-$ in the bracket belongs to	A1		A1 for suitable feedback	
	the 4 to make it – 4.'	8			
17	Any equation in the form $y = mx + 1$ will pass through $(0, 1)$	B1	2	B1 for clear explanation	М
	So $y = 2x + 1$ y = 3x + 1 will both pass through $(0, 1)$	B1 B1		B1 for first correct equation B1 for second correct equation	
		3			
18 a	A correct example e.g. $2(z-3) + 5q$	B1	2	B1 for an expression that is equivalent to $4z + 5q - 6$	М
b	A correct example $(10x - 4y)$	B1		B1 for an expression that simplifies to $5x - 2y$	
	e.g. $\frac{(10x-4y)}{2}$	2			
19 a		B4	3	B1 for each correct entry in the table	М
	x 12 x 2 x				
	7 <i>x</i> 5 <i>x</i>				
	$8x \mid 10x \mid -2x$				
b	Own example that works.	B1 5		B1 for their own correct example that works	

20	Z = 3A Z = A + 18 So $3A = A + 18$ 2A = 18 A = 9 Substitute $A = 9$ into $Z = A + 18$ to give $Z = 27$		B1 B1 M1 A1 M1	3	B1 for setting up first equation B1 for setting up second equation M1 for method of combining equations to eliminate one variable A1 for first correct answer found M1 for substituting first answer	М
	Check $3 \times 9 = 27$ which is correct.	Zoe has 27 and Alyssa has 9.	A1 6		A1 for correct second answer	
21	n + n + 20 = 2n + 20 2n + 20 = 90 2n = 70 n = 35 So 35 on first shelf and 35 + 20 = 55 on second. Need $90 \div 3 = 30$ on each shelf.	So need to move 5 from first shelf onto third shelf and 25 from second to third shelf.	B1 M1 A1 A1 B1	2 3	B1 for setting the initial expression M1 for setting this up to equal 90 A1 for first shelf as 35 A1 for second shelf as 55 B1 for correct process of sorting the books out to 30 on each shelf	M
22		Select <i>x</i> values less than 0 and substitute into the equation.	B1 1	2	B1 for clear explanation	М
23 a		y = 3	B1	2	B1 cao	М
b	Using $y = mx + c$ and $m = \frac{\text{change in } y}{\text{change in } x}$ $m = \frac{6 - (-4)}{3 - (-2)} = \frac{6 + 4}{3 + 2}$ $= \frac{10}{5} = 2$ Giving $y = 2x + c$		M1		M1 for correct process of finding gradient in using $y = mx + c$	
С	You know the point $(1, 2)$ is on the line, so substitute into $y = 2x + c$. $2 = 2 \times 1 + c$ so $c = 0$. So the equation of the line is $y = 2x$.	y = 2x Use this to find three more points in the third quadrant, e.g. $(-1, -2)$, $(-3, -6)$, $(-4, -8)$	M1 A1 M1 A1 6		M1 for correct process to find c A1 for $y = 2x$ M1 for correctly only using negative values of x A1 for three correct coordinates	

6

24		Since $y = 2x + 2$ y = 2(x + 1) Hence for any integer value of x , y will be an even number.	B1 1	2	B1 for clear explanation	М
25	nth term of first sequence is $6n - 1n$ th term of second sequence is $3n - 2So for a common term:6n - 1 = 3n - 23n = -1So n is not a whole number. And hence there is no term in both sequences.$	No	B1 B1 M1 B1 A1	2 3	B1 for <i>n</i> th term of first sequence B1 for <i>n</i> th term of second sequence M1 for method of putting both <i>n</i> th terms equal to each other B1 correctly finding <i>n</i> to be non-integer A1 for No alongside clear solution	M
26 a	D (5, 1)	(5, 1)	B1	3	B1 cao	M
b	Area of trapezium = $\frac{1}{2}$ × (4 + 10) × 5		M1		M1 for correct method in finding area of trapezium	
	$= \frac{1}{2} \times 14 \times 5$ 35 cm^2	052	A 4			
	35 CHI-	35 cm ²	A1 3		A1 cao	
27	Sketch a graph: 40 Runner 20 Cyclist		B1 B1 B1	3	B1 for showing runner on graph or explaining B1 for showing cyclist on graph or explaining B1 for showing where the two lines meet on graph or explaining	M
	0 8 am 9 am 10 am 11 am	11 am	B1 4		B1 cao	
28	100, 96, 92, 88, 84, 80, 76, 72, 68, 64, 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4		M1	3	M1 for process of accounting for first sequence	М
	2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98		M1		M1 for process of accounting for second sequence	
	Those in common 8, 20, 32, 44, 56, 68, 80, 92	8, 20, 32, 44, 56, 68, 80, 92	A1 3		A1 for all 8 correct terms	

29	Left hand graph is $x + y = 5$ Right hand graph is $y = z + 1$ Substitute y into first equation $x + z + 1 = 5$ x + z = 4	3 2 1 0 0 1 2 3 3 3 2 1	B1 B1 M1 A1 B2	3	B1 first graph equation B1 second graph equation M1 substituting to eliminate y A1 cao B1 for graph drawn with x on vertical axis. Allow x on horizontal axis B1 for $x + z = 4$ drawn correctly	М
30 a	Distance = $2 \times 25 \text{ km} = 50 \text{ km}$ 50 km ÷ 8 hours= 6.25 km per hour.	6.25 km/h	M1 A1	2 3	M1 for division of total distance by time A1 cao	М
b	e.g. What is Philip's highest speed? At what times did Philip have a rest?		B1		B1 for an example of a questions that could be asked about this situation	
С	A two part question, getting more difficult. And a mark scheme.		B2 5		B1 for a two part question using the graph with increase in difficulty B1 for suitable mark scheme	
31		Own story	B1	2	B1 for suitable story	М
		Sketch graph Question for the graph	B1 B1		B1 for matching sketch graph B1 for suitable question	
		Quodicition the graph	3	ĺ	Di loi dallable quodion	
32 ai	35 × 8 + 10	£290	M1 A1	3	M1 for the correct method A1 cao	М
ii	35 × 14	£490	M1 A1		M1 for correct method A1 cao	
b	35 <i>n</i> + 10 = 220		M1		M1 for process of sorting which rule to use	
	35n = 210	6 sessions	A1		A1 cao	
	$n = \frac{210}{35} = 6$					
С		£10 more	M1 A1		M1 for finding suitable calculations to find the difference A1 cao	
	$(7 \times 35) + 20 = £265$ $(7 \times 35) = 10 = £255$	2.0 11010	8	1		
33		10 + 15 = 25 = 5 ²	B4		B1 for each correct part of the number pattern provided	М
		$15 + 21 = 36 = 6^2$	4		correct signs and symbols are present	

34 a		Triangle drawn	B1	3	B1 for diagram drawn for all shapes	M
b		36 cm	B1		B1 cao	
С		48 cm	B1		B1 cao	
d / e		63 139 143 806 710 cm	B1		B1 cao	
			4			
35 a		Same difference of 2.4 but starting value is different.	B1 B1	2	B1 cao B1 cao	М
b		What are the differences What is the starting value.	B1 B1		B1 cao B1 cao	
36 a		Multiple of 4	B1 B1	2	B1 cao	М
b		No	B1		B1 for no	
		because we need to know the starting value as well.	3		B1 for reason alongside no	
37		Boys Get a red egg each from each of 4 girls: 4 red	B1	3	B1 for explanation of 4 red	М
		One green egg each other: 2 green	B1		B1 for explanation of 2 green	
		Girls Get a blue egg from each of the 2 boys: 2 blue	B1		B1 for explanation of 2 blue	
		One yellow egg from each other will be 3 yellow eggs each: 12 yellow	B1 B1		B1 for explanation of 12 yellow B1 for complete clear solution	
			5			
38	Example	Using BIDMAS for $2n^2$ tells you to calculate the power first. BIDMAS for	A1	2	A1 for an explanation. An example could be given to support the argument	М
	$2n^2 = 2 \times (3^2) = 2 \times 9 = 18$ $(2 \times 3)^2 = 6 \times 6 = 36$	$(2n)^2$ tells you that you do the calculation inside the bracket first.	1		Support the diguillent	
		ווופועב נווב טומטאבנ ווופנ.				

39	A letter, say f , stands for an unknown if it is in an equation such as $3f + 2 = 14$.	B1	2	B1 for clear explanation	М
	Then $f = 4$ is the only number that satisfies this equation.	B1		B1 for an example alongside the explanation	
	A letter stands for an variable if it is part of an equation that has more than two letters.	B1		B1 for a clear explanation	
	E.g. $A = \pi r^2$, where both A and r are variables that will be different for different	B1		B1 for an example alongside the explanation	
	values of A or r .	4			
40 a	ii, v and vi might be difficult as they all involve squaring a term. The classic error made in ii will be to calculate half of at and then to square that. The same error can be found in vi where $2\pi r$ can be calculated first and then squared.	B2	2	B1 for identifying some examples with a valid reason B1 for clear identification and explanation of classic errors	М
b	ii and vi are also difficult to rearrange as they involve a quadratic element and it's not easy to make each variable the subject of the formula. Classic errors in rearranging $s = ut + \frac{1}{2}at^2$ to make a the subject include: Incorrect sign when changing sides, e.g. $s + ut = \frac{1}{2}at^2$ Incorrect removal of fraction e.g. $\frac{1}{2}(s + t)$	B2		B1 for identifying some examples with a valid reason B1 for clear identification and explanation of classic errors	
	$= at^2$	4			

41	Start with numbers that work	M1	2	M1 for first method, e.g. starting with numbers	М
71		IVI I	2 3	with for mist method, e.g. starting with numbers	IVI
	$\frac{(6-1)}{2} = 2.5$	A1		A1 for an example that works	
	So $z = \frac{(s-1)}{t}$ will satisfy the conditions.	M1		M1 for second method, e.g. starting with a formula	
	Start with a formula say $z = \frac{(3s - 4t + x)}{2}$	A1		A1 for an example that works	
	Substitute $z = 2.5$, $s = 6$, $t = 2$ to find x . 5 = 18 - 8 + x. $x = -5$	B1		B1 for clear complete solution showing two different methods and two examples	
	$z = \frac{(3s - 4t - 5)}{2}$ satisfies the conditions.	5			
42	(2n+6)	M1	2	M1 for factorising	М
	$\frac{(2n+6)}{2}$	A1		A1 for any correct expression	
	$= \frac{2(n+3)}{2} = n+3$	2			
43	Let base length be b, then height will be	B1	3	B1 for stating variables	М
	3 <i>b</i>	B1 B1		B1 for stating triangle formula B1 for correct expression	
	Area of triangle = $\frac{1}{2}$ × base × height	, J		BY for correct expression	
	$=\frac{1}{2}\times b\times 3b$	M1		M1 for equating 6 with found expression	
	$=\frac{3}{2}b^2$				
	Where $A = 6$				
	$\frac{1}{2}b^2 = 6$				
	$b^2 = 2 \times \frac{6}{3} = 4$	A1		A1 for $b = 2$	
	b=2	A1 A1		A1 for 6 cm	
	so height is 3×2 which is 6 cm.	6			

44 a					You could use trial and improvement or a graph to help you decide where to start.	B1	2	B1 for explanation of suitable methods, could also be graphs	Н
b	x 1 2 3 2.5 2.6 2.55	x ³ 1 8 27 15.63 17.58 16.58	$ \begin{array}{c c} x + x^3 \\ 2 \\ 10 \\ 30 \\ 18.13 \\ 20.18 \\ 19.13 \end{array} $	Too small small big small big small big small	Use trial and improvement to solve both problems.	M1 M2		M1 for using their suggested method(s) M1 for finding the range including the solution M1 for process of finding which of the 1 dp trials is closest	
	x 7 8 7.5 7.3	x + 2 9 10 9.5 9.3	$ \begin{array}{c} x(x+2) \\ 63 \\ 80 \\ 71.25 \\ 67.89 \end{array} $	Too small big big exact	Number is 2.6	A1 M2		A1 for 2.6 or more accurate M1 for finding the range including the solution M1 for process of finding which of the 1 dp trials is closest	
					Width is 7.3 cm	A1 8		A1 cao	
45 a					'I think of a number and double it' just has an expression of $2x$ where x is the number I thought of — still unknown at the moment. 'I think of a number and double it — the answer is 12' has a solution that I know is 6.	B1	2	B1 for clear explanation of the difference	Н
b i					One	B1		B1 cao	
ii					e.g. 10 = <i>p</i> + 3	B1		B1 for a correct example	
iii					Because each solution is $p = 7$	B1 4		B1 for a clear explanation	

46	Looking at total counters needed for each step, he uses: Step 1: 6 counters Step 2: 12 counters Step 3: 18 counters Step 4: 24 counters Step n: 6n counters Adding how many counters he needs in total: Step 1: 6 counters Step 2: 18 counters Step 3: 36 counters Step 4: 60 counters					M1 A1 M1	3	M1 for the process of finding how many counters needed for each step A1 for 6n M1 for the process of finding the total number of counters used by each step	Н
	Looking at the pattern suggests products being involved, I see that this pattern can be written as Step 1: $3 \times 1 \times 2 = 6$ Step 2: $3 \times 2 \times 3 = 18$ Step 3: $3 \times 3 \times 4 = 36$ Step 4: $3 \times 4 \times 5 = 60$					M1		M1 for the process of looking to generalise this pattern B1 for the generalisation	
	Step n : $3n(n + 1)$ I need to find a value for n where this total is first over 1000 Use trial and improvement					В1 В1 М1		B1 for the generalisation B1 for the explanation of what he needed to do. M1 for a suitable process of finding which step he would get to	
	n	n + 1	3n(n + 1)	Too					
	10	11	330	small					
	20	21	1260	big					
	15	16	720	small					
	17	18	918	small	Harry will run out of counters while trying	A1		A1 cao	
	18	19	1026	big	to complete step 18.	8			
47					No. All the terms will be even.	B1 B1 2	2	B1 for no B1 for clear explanation	Н

48	H = 1.10E E = C - 50		B1	3	B1 for setting up all the equations from the given data	Н
	$D = \frac{2}{3}E$ $C = 500$ Charles is in the next round Substitute $C = 500$ into each equation: $E = C - 50$ $E = 450$ Eliza is in the next round $D = \frac{2}{3} \times 450 = 300$		M1 A1		M1 for substituting $C = 500$ A1 for $E = 450$ and staying in next round	
		There will be 3 candidates in the next round.	M1 A1 M1 A1 B1 8		M1 for calculating D A1 for $D = 300$ and not being in the next round M1 for calculating H A1 for 495 and being in next round B1 for stating 3 candidates in next round	
49		$(x + 1)^2 = x^2 + 2x + 1$ As required.	B2 B1	2	B1 for showing the x^2 in the correct place B1 for correctly showing x , x and 1 B1 for clearly showing the required result from the diagram	Н

50 a	1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1	B1	2 3	B1 for correct next three rows	Н
b	Looking at the diagonal rows: The first diagonal row contains only 1s. The second diagonal consists of all counting numbers: 1, 2, 3, 4, 5, etc. The third row consists of the triangle numbers: 1, 3, 6, 10, 15, etc.	В3		B1 for first pattern B1 for second pattern B1 for third pattern	
С	Triangle numbers	B1		B1 for triangle numbers	
d	1, 2, 4, 8, 16, 32	B1		B1 for correct sequence	
е	Multiplying by 2 each time, the n th term will be 2^{n-1}	B1 7		B1 for clear explanation	
51	6(x-c) = 5x - 4 6x - 6c = 5x - 4 x = 6c - 4 $6c$ is always even as even \times odd/even = even 4 is even So x must be even as even – even = even	M1 A1 B1	2	M1 for expanding the bracket A1 for x as subject B1 for clear explanation	Н
52	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1 B1 3	2	B1 for showing the pattern of fractions B1 for showing all the decimals B1 for clear explanation	Н
53 a b c d e f g h	even odd even even even even odd even	B1 B1 B1 B1 B1 B1 B1 B1	2	B1 cao	Н

54 a	6	B2	2	B1 for correct equation	Н
	$t = \frac{6}{n}$: Graph B		3	B1 for correct graph	• •
	One person will take a long time, many people will take a short time.	B1		B1 for good reason for choice	
b	$s = -4.9t^2 + 40t + 80$: Graph D	B2		B1 for correct equation B1 for correct graph	
	This is a quadratic graph and it shows the value 80 when t is 0, the height of the cliff.	B1		B1 for good reason for choice	
С	y = 3x + 320: Graph A	B2		B1 for correct equation B1 for correct graph	
	This will be a linear graph and this graph also crosses the vertical axis at (320, 0)	B1		B1 for good reason for choice	
d	showing his starting pay before selling any items.				
	$x^2 + 72x - 225 = 0$: Graph C	B2		B1 for correct equation	
	The area from the dimensions will create a quadratic graph which moves	B1		B1 for correct graph B1 for good reason for choice	
	further and further into the first quadrant.				
		12			
55	c and d can be difficult because they contain minus signs and this is a point	B1	2	B1 for identifying some examples with a valid reason	Н
	where errors are made, combining minus				
	signs. In substituting $x = -3$ into $t = -2(3 - x)$, a	B2		B1 for clear identification of one classic error with one	
	classic error is to assume 33 is 0.			equation	
	In substituting $x = -3$ into $z = \frac{-2(x+2)}{x}$,			B1 for another classic error	
	a classic error is to give a negative				
	divided by a negative a negative answer.				
	A suggestion to avoid these errors is to remember that when multiplying or	B1		B1 for a satisfactory suggestion	
	dividing with positive and negative				
	numbers, same signs means positive, different signs means negative.				
	s	4			

56	E	The similarities are that both have an equals sign and both require the manipulation of terms.	B1	2	B1 for clear explanation of similarities	Н
	E	The difference is that in solving an equation you end up with a numerical answer, but in rearranging you still have	B1		B1 for clear explanation of differences	
	a	a formula.	2			
57 a	p y	The two straight-line graphs will be parallel, with the same gradient of 2. $y = 2x$ crosses the y -axis at the origin and $y = 2x + 6$ crosses the y -axis at $y = 6$	B2	2	B1 for explanation of parallel B1 for explanation containing points of intersection of axes	Н
b	p y	The two straight-line graphs will be parallel, with the same gradient of 1. $y = x + 5$ crosses the <i>y</i> -axis at $y = 5$, and $y = x - 6$ crosses the <i>y</i> -axis at $y = -6$	B2		B1 for explanation of parallel B1 for explanation containing points of intersection of axes	
С	e	The two straight-line graphs will cross each other at $(\frac{11}{8}, \frac{1}{2})$ and each one is a reflection of the other in a vertical mirror ine.	B2		B1 for explanation containing point of intersection B1 for explanation of symmetry	
d	C	The two straight-line graphs will both cross the <i>y</i> -axis at the origin, one with gradient 2, another with a gradient of $\frac{1}{2}$.	B2		B1 for explanation of passing through origin B1 for explanation about gradient	