Cell Structures

You must be able to:

- Describe how light microscopes and staining can be used to view cells
- Explain how the main subcellular structures are related to their functions

Typical Animal

Cell

•

10–100µm

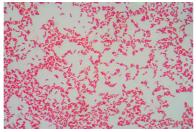
Virus

80nm

• Explain how electron microscopy has increased understanding of subcellular structures.

The Light Microscope

- Light microscopes are useful for viewing whole cells or large subcellular structures.
- The specimen is placed on a glass slide, covered with a cover slip and placed on the stage of the microscope.
- The eyepiece and objective lenses magnify the object.
- A lamp provides illumination.
- Magnification is calculated by multiplying the magnification of the • eyepiece lens by the magnification of the objective lens.
- Typical magnification is between 40 and 2000 times larger with a resolution of about 0.2 micrometres (µm).
- Stains can be used to colour whole cells and structures within cells, e.g. the nucleus, to make them easier to see.
- Sometimes a mordant is used, which fixes the stain to the structures.


The Electron Microscope

- Electron microscopes are useful for viewing subcellular structures, such as ribosomes, mitochondrial membranes and nuclear membranes, in detail.
- They use a beam of electrons instead of a lamp.
- The specimen is placed inside a vacuum chamber. •
- Electromagnets are used instead of lenses.
- The image is viewed on a TV screen.
- Typical magnification is 1 to 2 million times larger with a resolution of 2 nanometres (nm).

SI Units and Interconverting Units

1 metre (m) = 1000000 micrometres (µm)
1µm = 10⁻⁰m
1 metre (m) = 1000000000 nanometres (nm)
1nm = 10 ⁻⁹ m
To convert m to mm, multiply by 1000.
To convert mm to μ m, multiply by 1000.
To convert μm to nm, multiply by 1000.

Bacteria Viewed using an Electron Microscope

Chloroplast

(The second

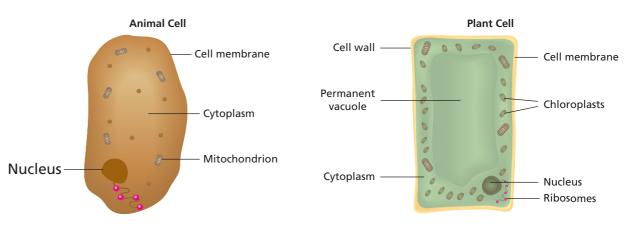
0.5µm

Cell Membrance Thickness

THE

20nm

Bacteria

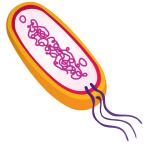

1–10µm

Ribosome

25nm

Subcellular Structures

- The following structures are common to both animal and plant cells: - nucleus – controls the cell and contains genetic material in the form of chromosomes
 - cytoplasm where most chemical reactions take place
 - cell membrane a barrier that controls the passage of substances into and out of the cell and contains receptor molecules
 - mitochondria contain the enzymes for cellular respiration and are the site of respiration.
- Additionally, plant cells contain:
 - cell wall made from cellulose and provides structural support
 - vacuole contains cell sap, which provides support
 - chloroplasts contain chlorophyll and are the site of photosynthesis.


Types of Cells

- Prokaryotes, e.g. bacteria, have no nucleus the nuclear material lies free within the cytoplasm.
- They may contain additional DNA in the form of a **plasmid**.
- Eukaryotes, e.g. human cheek cell, amoeba, plant cell, have a
- nucleus bound by a nuclear membrane. In eukaryotes, the cell wall is only present in plant cells.

	/
1.	The eyepiece lens of a light microscope is ×10 and the ob
	lens is ×4. What is the total magnification?
2.	Which part of a cell is:
	a) the site of respiration?
	b) the site of photosynthesis?
	c) a barrier controlling what passes in and out of the ce
	d) where most chemical reactions take place?
з.	Name two structures found in plant cells, but not in anin

A Prokaryote

bjective ell? mal cells.

Key Words magnification resolution stain mordant receptor molecules chlorophyll prokaryote plasmid eukaryote

Cell Level Systems: Revise