Collins CSEC® Chemistry Workbook answers

(1)

(1)

A1 States of matter

- **1. a**) **i**) Ammonium chloride
 - ii) Diffusion Diffusion is the movement of particles from an area of higher concentration to an area of lower concentration until the particles are evenly distributed. (2)
 - iii) The ammonia solution gave off ammonia gas and the hydrochloric acid gave off hydrogen chloride gas. The particles of the two gases diffused along the tube, collided and reacted to form ammonium chloride. (3)

- ii) The distilled water had a higher water content than the cytoplasm inside the paw paw cells and the cell membranes were differentially permeable. The water molecules were able to move through the membranes into the cells causing the cells to swell and the strips to increase in volume. (3)iii) Osmosis (1)
- c) Sodium chloride draws water out of the cells of the fish and any micro-organisms by osmosis. Water is, therefore, not available for chemical reactions in the cells, some of which cause decay, and micro-organisms can't grow. (2)

2. a)

Property	Solid	Liquid	Gas
Volume		definite	variable; the volume is the same as the entire container
Arrangement of particles	packed closely together, usually in a regular way		randomly arranged with large spaces between
Energy of particles	have very small amounts of kinetic energy	have medium amounts of kinetic energy	

(6)

- b) i) The particles have large spaces between them, so they can be easily pushed closer together. (1)
 - ii) The particles are packed tightly together with very little empty space between. (1)
 - iii) The particles move around rapidly and have weak forces of attraction between them, so they spread out to fill any available space in the container. (2)

- c) i) A: Melting B: Boiling or evaporation C: Freezing D: Condensation
 - Iodine or carbon dioxide or ammonium chloride ii)
- or naphthalene (1)d) i)
 - Liquid (1)ii) 56 °C (1)
 - (1)
 - iii)

A2 Mixtures and separations

i)

	Pure substance	Mixture	
Composition		variable	
Properties	fixed and constant	variable; the components retain their individual properties	

(3)

(4)

- ii) An element is a pure substance that cannot be broken down into any simpler substances by any ordinary chemical or physical means. A compound is a pure substance that contains two or more different types of element that are bonded together chemically in fixed proportions and in such a way that their properties have changed. (2)
- The particles in a suspension are larger than b) i) those in a colloid. (1)
 - ii) The particles in a suspension settle if left undisturbed, whereas the particles in a colloid never settle. (1)
 - iii) Light does not pass through a suspension, whereas most colloids scatter light. (1)
- c) i) A solution is a homogeneous mixture consisting of two or more components, one of which is usually a liquid. (1)
 - ii) Solubility is the mass of solute that will saturate 100 g of solvent at a given temperature. (1)
- d) i) 17 g per 100 g water (1)ii) 45 °C (1)
 - iii) At 76 °C, 54 g of Z saturate 100 g water At 10 °C, 12.5 g of Z saturate 100 g water : mass of Z crystallising out of a saturated solution containing 100 g water = 54 - 12.5 g = 41.5 g (3)iv) At 62 °C, 39 g of Z saturate 100 g water
 - : at 62 °C, 45 g of Z saturate $\frac{100}{39} \times 45$ g water = 115.4 g of water (2)
 - At 55 °C, 33 g of Z saturate 100 g water v) : at 55 °C, $\frac{33}{100} \times 350$ g of Z saturate 350 g water = 115.5 g of Z (2)

- **b)** Calcium hydroxide
- c) The cane juice is heated in a series of evaporators at successively reduced pressures and it boils at successively lower temperatures. This causes the water to evaporate and the juice becomes concentrated, forming a thick syrup. (2)

A3 Atomic structure

- 1. a) i) An atom is the smallest component of an element that can exist and still have the same chemical properties as the element. (1)
 - ii) Mass number is the total number of protons and neutrons in the nucleus of one atom of an element. (1)
 - iii) Atomic number is the number of protons in the nucleus of one atom of an element. (1)
 - iv) Relative atomic mass is the average mass of one atom of an element compared to one-twelfth the mass of an atom of carbon-12. (1)

b)	Particle	Relative mass	Relative charge	Location in the atom
			+1	in the nucleus
		$\frac{1}{1840}$		spinning around the nucleus
	neutron	1		in the nucleus
				(7)

c) A: Mass number B: Atomic number X: Atomic symbol

(3)

(4)

d)				
Nuclear notation	³¹ ₁₅ P	65 ₃₀ Zn	²⁰⁷ ₈₂ Pb	$^{108}_{47}\mathrm{Ag}$
Name of element	phosphorus	zinc	lead	silver
Number of protons	15	30	82	47
Number of neutrons	16	35	125	61
Number of electrons	15	30	82	47
				(4)

2. a)			
Element	Potassium	Nitrogen	Chlorine
Atomic symbol	K	N	Cl
Mass number		14	35
Atomic number	19	7	17
Number of protons	19	7	
Number of electrons		7	17
Number of neutrons	20		
Electronic configuration	2,8,8,1		2,8,7
			(5)

b)
$${}^{40}_{18}$$
Ar: 2,8,8
 ${}^{12}_{6}$ C: 2,4
 ${}^{7}_{3}$ Li: 2,1
 ${}^{32}_{2}$ S: 2,8,6

(1)

$${}_{6}^{2}S: 2,$$

3. a) i) Isotopy is the occurrence of atoms of the same element which have the same number of protons and electrons but different numbers of neutrons.

(1)

ii) ${}^{23}_{11}$ Y 11 protons, 12 neutrons, 11 electrons ${}^{25}_{11}$ Y 11 protons, 14 neutrons, 11 electrons (2)

iii) Average mass number =
$$\left[\frac{85}{100} \times 23\right] + \left[\frac{15}{100} \times 25\right]$$

= 23.3 (1)

- iv) They both contain the same number and arrangement of electrons. (1)
- v) They would have slightly different masses because $^{25}_{11}$ Y has two more neutrons than $^{23}_{11}$ Y, therefore $^{25}_{11}$ Y would be slightly heavier than $^{23}_{11}$ Y. (1)
- b) i) An isotope with an unstable nucleus that splits spontaneously to become more stable. As it splits, it ejects one or more small particles and radiation.
 (1)
 - ii) A controlled beam of gamma radiation from the cobalt-60 is directed at the tumour containing the cancerous cells and it destroys the cells. (2)
 - iii) Any three of the following: To date plant and animal remains. Isotope: carbon-14 Tracers for use in medical treatment or biological research. Suitable isotope for use in medical treatment: iodine-131. Suitable isotope for use in biological research: carbon-14 To power the batteries used in heart pacemakers. Suitable isotope: plutonium-238 To generate electricity in nuclear power stations. Suitable isotope: uranium-235 or plutonium-239

(3)

A4 Periodic table and periodicity

- a) i) Döbereiner found that if certain groups of three elements that possessed similar properties were arranged in increasing relative atomic mass, the relative atomic mass of the middle element was close to the average of the other two elements. Mendeleev created the first version of the periodic table. He arranged elements in increasing relative atomic mass, placed elements with similar properties together in vertical columns and left gaps when it seemed that elements had not yet been discovered. (4)
 - ii) Elements are arranged in order of increasing atomic number and in relation to the electron structure of their atoms and according to their chemical properties. (2)
 - b) i) For elements in Groups I to VII, the group number is the same as the number of valence electrons. (1)
 - ii) The period number is the same as the number of occupied electron shells. (1)
 - iii) Potassium is in Group I, period 4. (2)
 - iv) 2,8,5 (1)

iv) Chlorine has a greater strength of oxidising power than bromine, and therefore displaces bromine from the potassium bromide. The bromine produced is orange-brown and it dissolves in the solution.
 (3)

 $2KBr(aq) + Cl_2(g) \longrightarrow 2KCl(aq) + Br_2(aq)$

d) i) They both have three occupied electron shells. (1)

iii) Any three of the following:

Magnesium is a solid at room temperature, whereas D is a gas.

Magnesium has high melting and boiling points, whereas D has low melting and boiling points. Magnesium conducts electricity and heat, whereas D does not conduct electricity or heat. Magnesium has a high density, whereas D has a low density. (3)

5

CSEC_Chem_WB_ANS.indd 5

iv) Element G

The atomic radius of G is greater than that of magnesium because it has one fewer protons, therefore the attraction between the positive nucleus and the valence electron is weaker in G. As a result G ionises more easily than magnesium. (3) $M\sigma(c) + 2UC(c\sigma) = \sum M\sigma C(c\sigma) + U(c)$

v) $Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$ (2)

A5 Structure and bonding

- a) i) To gain a full outer electron shell and become stable. (1)
 - ii) Ionic bonding: metal atoms lose their valence electrons and non-metal atoms gain these electrons to fill their valence electron shells. Covalent bonding: atoms of non-metals share their valence electrons. (2)

D) Name of compound	Formula of compound	Type of bonding in the compound
ethane	C ₂ H ₆	covalent
sodium oxide	Na ₂ O	ionic
magnesium nitride	Mg ₃ N ₂	ionic
sulfur dioxide	SO ₂	covalent
calcium chloride	CaCl ₂	ionic
trifluoromethane	CHF ₃	covalent
		(3)

c) i)

2 lithium atoms 1 sulfur atom 2 lithium ions 1 sulfide ion

- Element 1Element 2the compound178Covalent1316Ionic207Ionic159Covalent
- b) i) Covalent

(2)

(1)

Entity	Formula	Entity	Formula
potassium ion	K+	water molecule	H ₂ O
sulfate ion	SO ₄ ²⁻	sulfur trioxide molecule	SO ₃
hydrogen carbonate ion	HCO ₃ ⁻	carbon monoxide molecule	СО
magnesium ion	Mg ²⁺	calcium hydrogensulfate	Ca(HSO ₄) ₂
nitrate ion	NO ₃ -	sodium nitride	Na ₃ N
iron(III) ion	Fe ³⁺	ammonium phosphate	(NH ₄) ₃ PO ₄
fluoride ion	F-	copper(II) nitrite	Cu(NO ₂) ₂
carbon disulfide molecule	CS ₂	silver sulfide	Ag ₂ S
chlorine molecule	Cl ₂	aluminium carbonate	Al ₂ (CO ₃) ₃
nitrogen dioxide molecule	NO ₂	zinc hydroxide	Zn(OH) ₂

- a) The copper atoms are packed together in rows and the valence electrons from each atom become delocalised. This forms positive copper cations and a sea of mobile electrons. The strong electrostatic forces of attraction between the delocalised electrons and the cations, called the metallic bond, hold the copper lattice together.
 - b) i) The delocalised electrons from each copper atom are free to move and carry electricity. (1)
 - ii) The copper atoms are all the same size and can roll over each other into new positions without breaking the metallic bond when the copper is drawn out. (1)
 - iii) The strong electrostatic forces of attraction between the cations and delocalised electrons require fairly large amounts of heat energy to break.

a)

Property	Ionic solid	Simple molecular solid
Structure	composed of ions held together by strong ionic bonds	composed of molecules held together by weak intermolecular forces
Melting point	high	low
Solubility	most are soluble in water and insoluble in organic solvents	most are insoluble in water and soluble in organic solvents
Electrical conductivity	do not conduct electricity when solid; do conduct electricity when molten or dissolved in water	do not conduct electricity in any state

b) When sodium chloride is solid, the ions are held together by strong ionic bonds and are not free to move. When it is molten or dissolved in water, the ionic bonds have broken and the ions are free to move and carry electricity. (2)

- d) i) Allotropy is the existence of different structural forms of the same element in the same physical state. (1)
 - ii) Their chemical properties are the same because they are both made of the same element, carbon. Their physical properties are different because the atoms are bonded differently in each of them. (2)
 - iii) Diamond has a high melting point: The strong covalent bonds between the carbon atoms throughout the structure of diamond need large amounts of heat energy to break. (2)Graphite conducts electricity: One of the four valence electrons from each carbon atom is delocalised and free to move and carry electricity. (2)Diamond is used in the tips of cutting tools: Diamond is extremely hard because of the strong covalent bonds between the carbon atoms throughout its structure. (2)Graphite is used as a solid lubricant: Weak forces of attraction exist between the layers of carbon atoms, which allow the layers to slide easily over each other. (2)

A6 Mole concept

- 1. a) i) A mole is the amount of a substance that contains 6.0×10^{23} particles of the substance. (1)
 - ii) Relative mass is the average mass of one atom, molecule or formula unit of a substance compared to one-twelfth the mass of an atom of carbon-12, whereas molar mass is the mass of one mole of a substance.
 - iii) Chlorine (Cl₂): 2 × 35.5 = 71 Nitrogen dioxide (NO₂): 14 + (2 × 16) = 46 Hydrogen sulfide (H₂S): (2 × 1) + 32 = 34 (3)
 - iv) Aluminium oxide $(A_1^2O_3)$: $(2 \times 27) + (3 \times 16) = 102$ Ammonium sulfate $((NH_4)_2SO_4)$: $(2 \times 14) + (2 \times 4 \times 1) + 32 + (4 \times 16) = 132$ Calcium hydrogen carbonate $(Ca(HCO_3)_2)$: 40 + $(2 \times 1) + (2 \times 12) + (2 \times 3 \times 16) = 162$ (3)

	b)	i)	Mass of 1 mol Zn(OH) ₂ = 65 + (2 × 16) + (2 × 1) g = 99 g ∴ mass of 0.4 mol Zn(OH) ₂ = 0.4 × 99 g = 39.6	g
		ii)	Mass of 1 mol K ₂ CO ₃ = (2 × 39) + 12 + (3 × 16) = 138 g ∴ number of moles K ₂ CO ₃ in 8.28 g = $\frac{8.28}{129}$ mol	(2) g
		iii)	= 0.06 mol Mass of 1 mol CO ₂ = $12 + (2 \times 16)$ g = 44 g	(2)
		,	∴ number of moles CO_2 in 11 g = $\frac{11}{44}$ mol = 0.25 mol 1 mol CO_2 contains 6.0 × 10 ²³ CO ₂ molecules	
			$\therefore 0.25 \text{ mol CO}_2 \text{ contains } 0.25 \times 6.0 \times 10^{23} \text{ CO}_2$ molecules = $1.5 \times 10^{23} \text{ CO}_2$ molecules	(3)
	c)	Mas (3 × Mas	ss of 1 mol $Al_2(CO_3)_3 = (2 \times 27) + (3 \times 12) + (3 \times 16) g = 234 g$ ss of oxygen in 1 mol $Al_2(CO_3)_3 = 9 \times 16 g = 144$	g
		∴ p = 6	bercentage oxygen in $Al_2CO_3 = \frac{144}{234} \times 100 \%$ 1.54 %	(3)
2.	a)	i)	Avogadro's Law states that equal volumes of all gases, under the same conditions of temperature and pressure, contain the same number of	e
		ii)	molecules. At rtp: 24 dm ³ or 24 000 cm ³	(1)
	b)	;)	At stp: 22.4 dm ³ or 22 400 cm ³	(2)
	U)	i)	$\therefore \text{ number of moles in } 3.36 \text{ dm}^3 \text{ SO}_2 = \frac{3.36}{22.4} \text{ mol}$ $= 0.15 \text{ mol}$ Volume of 1 mol O, at rtp = 24.0 dm ³	(1)
			.: volume of 0.075 mol O_2 at rtp = 24.0 dm 24.0 dm ³ = 1.8 dm³	(1)
		111)	Volume of 1 mol NH ₃ at stp = 22 400 cm ³ \therefore number of moles in 1792 cm ³ NH ₃ = $\frac{1792}{22400}$ m = 0.08 mol	ol
		iv)	Mass of 1 mol NH ₃ = 14 + (3 × 1) g = 17 g \therefore mass of 0.08 mol NH ₃ = 0.08 × 17 g = 1.36 g 1 mol H ₂ contains 6.0 × 10 ²³ H ₂ molecules	(3)
			:. Number of moles in 4.8×10^{22} H ₂ molecules = $\frac{4.8 \times 10^{22}}{6.0 \times 10^{23}}$ mol = 0.08 mol	
			Volume of 1 mol H ₂ at rtp = 24.0 dm^3	

$$\therefore \text{ volume of } 0.08 \text{ mol } O_2 \text{ at } rtp = 0.08 \times 24.0 \text{ dm}^3$$

= 1.92 dm³ (2)
3. a) i) Ca(s) + 2HCl(aq) \longrightarrow CaCl₂(aq) + H₂(g) (2)
ii) Zn(HCO₃)₂(aq) + 2HNO₃(aq) \longrightarrow

$$\begin{array}{cccc} & Zn(NO_3)_2(aq) + 2CO_2(g) + 2H_2O(l) & (2) \\ & iii) & 2Al(s) + 3Cl_2(g) \longrightarrow 2AlCl_3(s) & (2) \\ & iv) & Cl_2(g) + 2KI(aq) \longrightarrow 2KCl(aq) + I_2(aq) & (2) \\ & v) & 2Cu(NO_3)_2(s) \longrightarrow 2CuO(s) + 4NO_2(g) + O_2(g) \\ & & (2) \\ & & (2) \\ & & (2) \\ \end{array}$$

$$\begin{array}{cccc} b) & i) & Pb^{2+}(aq) + 2Cl^{-}(aq) \longrightarrow PbCl_2(s) & (2) \\ & & ii) & OH^{-}(aq) + H^{+}(aq) \longrightarrow H_2O(l) & (2) \\ & & iii) & Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_2(g) & (2) \\ & & iv) & Al^{3+}(aq) + 3OH^{-}(aq) \longrightarrow Al(OH)_3(s) & (2) \end{array}$$

- a) The Law of Conservation of Matter states that matter can neither be created nor destroyed during a chemical reaction. (1)
- **b) i)** Mass of 1 mol KOH = 39 + 16 + 1 g = 56 g \therefore number of moles in 11.2 g KOH = $\frac{11.2}{56}$ mol = 0.2 mol (2) ii) 2 mol KOH produces 1 mol K₂SO : 0.2 mol KOH produces 0.1 mol K,SO (1) iii) Mass of 1 mol $K_2SO_4 = (2 \times 39) + 32 + (4 \times 16) g$ = 174 g: mass of 0.1 mol $K_2SO_4 = 0.1 \times 174 \text{ g} = 17.4 \text{ g}$ (2) c) 2 mol NaCl forms 1 mol PbCl : 0.3 mol NaCl forms 0.15 mol PbCl, Mass of 1 mol PbCl₂ = $207 + (2 \times 35.5)$ g = 278 g : mass of 0.15 mol PbCl₂ = 0.15×278 g = **41.7** g (3) **d)** Mass of 1 mol Mg(HCO₂)₂ = $24 + (2 \times 1) + (2 \times 12) +$ $(2 \times 3 \times 16) g = 146 g$ \therefore number of moles in 3.65 g Mg(HCO₃)₂ = $\frac{3.65}{146}$ mol = 0.025 mol 1 mol Mg(HCO₃), produces 2 mol CO₂ : 0.025 mol Mg(HCO₂), produces 0.05 mol CO₂ Volume of 1 mol CO₂ at stp = 22.4 dm^3 \therefore Volume of 0.05 mol CO₂ at stp = 0.05 × 22.4 dm³ $= 1.12 \text{ dm}^3$ (4) e) Volume of 1 mol H₂O(g) at rtp = 24.0 dm³ ∴ number of moles in 960 cm³ H₂O(g) = $\frac{960}{24000}$ mol = 0.04 mol 1 mol O₂ forms 2 mol H₂O(g) \therefore 0.02 mol O₂ forms 0.04 mol H₂O(g) Volume of 1 mol O₂ at rtp = 24 000 cm³ \therefore volume of 0.02 mol O₂ at rtp = 0.02 × 24 000 cm³ $= 480 \text{ cm}^3$ (3)f) Mass of 1 mol OH^- ions = 16 + 1 g = 17 g $\therefore \text{ Number of moles in 12.75 g OH}^- \text{ ions} = \frac{12.75}{17} \text{ mol}$ = 0.75 mol3 mol OH⁻ ions form 1 mol Fe(OH) $\therefore 0.75 \text{ mol OH}^- \text{ ions form } 0.25 \text{ mol Fe}(OH)_2$ Mass of 1 mol Fe(OH)₃ = $56 + (3 \times 16) + (3 \times 1)$ g $= 107 \, g$ \therefore mass of 0.25 mol Fe(OH)₂ = 0.25 × 107 g (5) = 26.75 g5. a) i) Molar concentration gives the number of moles of solute dissolved in 1 dm3 of solution. (1)ii) A standard solution is one whose concentration is known accurately. (1)iii) Brianna would weigh 5.6 g of potassium hydroxide on a balance, transfer it to a beaker and add enough distilled water to dissolve the solid. She would pour the solution into a clean, 1 dm3 volumetric flask and rinse the beaker over the flask, transferring the washings to the flask. She would then fill the flask with distilled water so the meniscus of the solution rests on the line on the neck, place a stopper on the flask and invert it to mix the solution. (4) b) i) 1000 cm³ Na₂CO₃(aq) contains 0.24 mol Na₂CO₃ :. 250 cm³ Na₂CO₃(aq) contains $\frac{0.24}{1000} \times 250$ mol $Na_2CO_3 = 0.06 \text{ mol } Na_2CO_3$ Mass of 1 mol Na₂CO₃ = $(2 \times 23) + 12 + (3 \times 16)$ g = 106 g

ii) 400 cm³ (NH₄)₂SO₄(aq) contains 6.6 g (NH₄)₂SO₄ ∴ 1000 cm³ (NH₄)₂SO₄(aq) contains $\frac{6.6}{400} \times 1000$ g (NH₄)₂SO₄ = 16.5 g (NH₄)₂SO₄ Mass of 1 mol (NH₄)₂SO₄ = (2 × 14) + (2 × 4 × 1) + 32 + (4 × 16) g = 132 g ∴ number of moles in 16.5 g (NH₄)₂SO₄ = $\frac{16.5}{132}$ mol = 0.125 mol Molar concentration of (NH₄)₂SO₄(aq) = 0.125 mol dm⁻³ (3) iii) 1000 cm³ H₂SO₄(aq) contains 78.4 g H₂SO₄

∴ 200 cm³ H₂SO₄(aq) contains 76.4 g H₂SO₄ ∴ 200 cm³ H₂SO₄(aq) contains $\frac{78.4}{1000} \times 200 \text{ g H}_2\text{SO}_4$ = 15.68 g H₂SO₄ Mass of 1 mol H₂SO₄ = (2 × 1) + 32 (4 × 16) g = 98 g ∴ number of moles in 15.68 g H₂SO₄ = $\frac{15.68}{98}$ mol = **0.16 mol** (3)

iv) Mass of 1 mol NaOH = 23 + 16 + 1 g = 40 g \therefore number of moles NaOH in 12.0 g = $\frac{12.0}{40}$ mol = 0.3 mol 1000 cm³ of the required solution contains 0.75 mol NaOH $\therefore \frac{1000}{0.75} \times 0.3 \text{ cm}^3$ of the required solution contain 0.3 mol NaOH = 400 cm³ (3)

A7 Acids, bases and salts

- a) i) All acids contain H⁺ ions and all alkalis contain OH⁻ ions. (2)
 - When acids dissolve in water their molecules ionise and form H⁺ ions in the solution. Each H⁺ ion is a single proton and when acids react they can give these H⁺ ions, or protons, to the other reactant. When a base reacts with an acid, the base accepts the H⁺ ions, or protons, from the acid. (3)
 - iii) The hydrochloric acid donates its H⁺ ions, or protons, to the OH⁻ ions of the sodium hydroxide, forming water. (2)
 - iv) An alkali is a base which is soluble in water. (1)

- ii) Sulfuric acid fully ionises when it dissolves in water and the solution contains a high concentration of H⁺ ions. Ethanoic acid only partially ionises when it dissolves in water and the solution contains a low concentration of H⁺ ions. (2)
- 2. a) i) Hydrogen (1)
 ii) Place a burning splint at the mouth of the test tube. The splint should be extinguished with a squeaky
 - pop. (1)
 - iii) $Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$ (1) iv) $Mg(s) + 2H^+(aq) \longrightarrow Mg^{2+}(aq) + H_2(g)$ (1)
 - **b) i)** $\operatorname{CuCO}_3(s) + 2\operatorname{HNO}_3(aq) \longrightarrow \operatorname{Cu(NO}_3)_2(aq) + \operatorname{CO}_2(g) + \operatorname{H}_2O(l)$ (2)
 - ii) $\operatorname{Zn}(\operatorname{OH})_2(s) + 2\operatorname{HCl}(aq) \longrightarrow \operatorname{ZnCl}_2(aq) + 2\operatorname{H}_2O(g)$ (2)
 - iii) $Al_2O_3(s) + 3H_2SO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3H_2O(l)$ (2)
 - iv) $Ca(HCO_3)_2(aq) + 2HCl(aq) \longrightarrow CaCl_2(aq) + 2CO_2(g) + 2H_2O(l)$ (2)
 - c) i) $OH^{-}(aq) + H^{+}(aq) \longrightarrow H_{2}O(l)$ (1)
 - ii) $CO_3^{2-}(aq) + 2H^+(aq) \longrightarrow CO_2(g) + H_2O(l)$ (2)
- iii) $HCO_3^{-}(aq) + H^+(aq) \longrightarrow CO_2^{-}(g) + H_2^{-}O(l)$ (2) 3. a) i) An acid anhydride is a compound which reacts
 - (i) In acta any article is a compound which reacts with water to form an acid.
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 <li
 - b) i) Vitamin C (1)
 - ii) Lactic acid (1)
 - iii) Peter gave the correct advice. Sodium hydrogen carbonate would neutralise the methanoic acid in the sting, reducing the irritation caused by it. (2)
 - iv) The citric acid in the lime juice reacts with the iron(III) oxide in the rust stains making a soluble compound which can be washed away removing the rusty Fe³⁺ ions. (2)
- **4.** a) i) Ammonia reacts with water to form a solution which contains OH⁻ ions. (1)
 - ii) Any two of the following:Sodium hydroxidePotassium hydroxideCalcium hydroxide(2)
 - b) i) $Ca(OH)_2(s) + 2NH_4Cl(s) \longrightarrow CaCl_2(s) + 2NH_3(g) + 2H_2O(l)$ (2)
 - ii) $\operatorname{CuO}(s) + (\operatorname{NH}_4)_2 \operatorname{SO}_4(s) \longrightarrow \operatorname{CuSO}_4(s) + 2\operatorname{NH}_3(g) + \operatorname{H}_2\operatorname{O}(l)$ (2)
 - iii) Lead(III) hydroxide is amphoteric and it reacted with both the nitric acid and the sodium hydroxide to form soluble salts. (2)

	c)	1)	Sulfuric acid		(1)
		ii)	$CuCO_3(s) + H_2SO_4(a)$	$(q) \longrightarrow CuSO_4(aq)$	+
		;;;)	To oncure that all the	$CO_2(g) + H_2$	O(I) (I) that no
		III <i>)</i>	acid remains in the c	opper(II) sulfate solu	tion. (1)
		iv)	Filtration		(1)
		v)	So that the copper(II) sulfate that he prod	uces
			is hydrated, containing	ng water of crystallisa	ation,
			instead of being anhy	vdrous, containing no	water
		vi)	Copper does not read	ct with sulfuric acid	(2) (1)
	4)	;)	Titration	et with summe actu.	(1)
	u)	1) ii)	Sodium carbonate is	soluble so when all t	(1) he acid
)	has finished reacting	and excess carbonate	e is
			added, the carbonate	dissolves making the	2
			sodium chloride imp	oure.	(2)
		111)	He would use an ind	icator which is one co	olour in
			acidic conditions	nd a different colour	(2)
7	a)	i)	A neutralisation read	tion is a reaction bet	(=)
<i>.</i>	u)	1)	a base and an acid to	form a salt and wate	r. (1)
		ii)	Acid in the mouth cau	ises tooth decay. Sodii	ım
			hydrogen carbonate i	n the toothpaste neut	ralises the
			acid in the mouth and	the F ⁻ ions in the too	thpaste
			of tooth enamel form	ing calcium fluoroapat	tite which
			does not react with th	e acid in the mouth.	(3)
		iii)	A substance taken to	neutralise excess sto	mach
			acid, thereby relievin	g indigestion and aci	d reflux.
		• 、	m , 11 , 1	1 . 1	(2)
		1V)	10 neutralise any aci	d in his soil because i eutral soil	nost (1)
		v)	The lime reacts with	the NH ⁺ ions in the	fertiliser
		,	forming a salt, ammo	onia and water. The li	me
			cannot then neutralia	se any acid in the soil	and the
			NH_4^+ ions are no lon	ger available to fertili	se the
			$C_{2}O(s) + 2NH^{+}(aq)$		$IH(\sigma) +$
			$H_{2}O(l)$	- Ou (uq) + 21	(3)
	b)	i)	Because the reaction	was producing heat a	and the
	,	,	polystyrene cup acte	d as an insulator, redu	ucing
			the loss of heat to the	e surroundings.	(2)
		ii)	Volume of	Temperature of	
			acid X added/cm ³	solution/°C	
			0	29.2	
			2	30.2	
			4	31.4	
			6	32.3	
			8	33.3	
			10	34.4	
			12	25 /	
			14	25.0	
			14	35.0	
			16	34.2	
			18	33.6	

methyl orange. (1)

b)	i)
U)	1)

	Titr	ation nun	ıber
	1	2	3
Final burette reading/cm ³	15.3	16.6	18.9
Initial burette reading/cm ³	n^3 0.5 1.9 4.2		
Volume of acid added/cm ³	14.8	14.7	14.7
(3) ii) Volume of $H_2SO_4(aq)$ needed = $\frac{14.8 + 14.7 + 14.7}{3}$ cm ³ = 14.7 cm ³ (1) iii) 1000 cm ³ NaOH(aq) contains 8.0 g NaOH			

 $\therefore 25 \text{ cm}^3 \text{ NaOH}(aq) \text{ contains } \frac{a.o}{1000} \times 25 \text{ g NaOH} = 0.2 \text{ g NaOH}$ Mass of 1 mol NaOH = 23 + 16 + 1 g = 40 g $\therefore \text{ number of moles in } 0.2 \text{ g NaOH} = \frac{0.2}{40} \text{ mol} = 0.005 \text{ mol}$ (3)

- iv) $2\text{NaOH}(aq) + \text{H}_2\text{SO}_4(aq) \longrightarrow \text{Na}_2\text{SO}_4(aq) + 2\text{H}_2\text{O}(l)$ (2)
- v)2 mol NaOH neutralise 1 mole H_2SO_4 $\therefore 0.005$ mol NaOH neutralises 0.0025 mol H_2SO_4 Number of moles of H_2SO_4 used in the titration =0.0025 mol

11

20

32.8

vi) 14.7 cm³ H₂SO₄(aq) contains 0.0025 mol H₂SO₄ ∴ 1000 cm³ H₂SO₄(aq) contains $\frac{0.0025}{14.7} \times 1000$ mol H₂SO₄ = 0.17 mol H₂SO₄ Molar concentration of H₂SO₄(aq) = 0.17 mol dm⁻³ (1) vii) Mass of 1 mol H₂SO₄ = (2 × 1) + 32 + (4 × 16) g

= 98 g ∴ mass of 0.17 mol H₂SO₄ = 0.17 × 98 g = 16.66 g Mass concentration of H₂SO₄ = **16.66 g dm⁻³** (2)

A8 Oxidation-reduction reactions

1.	a)	i)	Oxidation: The loss of electrons by an element i	n
		ii)	Reduction: The gain of electrons by an element	in
		11)	its free state or an element in a compound	(2)
		•	The state of an element in a compound.	(2)
	b)	1)	Type of reaction: Reduction	
			Reason: Each Fe ³⁺ ion has gained one electron to	0
			form an Fe ²⁺ ion.	(2)
		ii)	Type of reaction: Oxidation	
			Reason: The aluminium atom has lost three	
			electrons to form an Al^{3+} ion.	(2)
		iii)	Ionic half equation: $O_2(g) + 4e^- \longrightarrow 2O^{2-}(s)$	(2)
			Type of reaction: Reduction	
			Reason: Each oxygen atom in an oxygen molecu	ıle
			gains two electrons to form an O^{2-} ion.	(2)
	c)	i)	Oxidation: The increase in the oxidation number	er
			of an element in its free state or an element in a	
			compound.	(1)
		ii)	Reduction: The decrease in the oxidation numb	er
			of an element in its free state or an element in a	
			compound.	(1)
	d)	i)	(oxidation number of S) + $3(-2) = 0$	
			(oxidation number of S) + $(-6) = 0$	
			oxidation number of $S = +6$	
			Alternative name: Sulfur(VI) oxide	(2)
		ii)	(oxidation number of N) + $2(-2) = -1$	
			(oxidation number of N) + $(-4) = -1$	
			oxidation number of $N = -1 + 4$	
			= +3	
			Alternative name: Nitrate(III) ion	(2)
		iii)	(oxidation number of Cl) + $4(-2) = -1$	
			(oxidation number of Cl) + $(-8) = -1$	
			oxidation number of $Cl = -1 + 8$	
			= +7	
			Name: Chlorate(VII) ion	(2)
		iv)	Oxidation number of N in NH ₃ :	
			(oxidation number of N) + $3(+1) = 0$	
			(oxidation number of N) + $(+3) = 0$	
			oxidation number of $N = -3$	
			Oxidation number of N in $N_2 = 0$	
			The oxidation number of nitrogen increases from	m
			-3 to 0, therefore the ammonia has been oxidise	ed.
				(3)

- e) i) $Mg(s) + CuSO_4(aq) \longrightarrow MgSO_4(aq) + Cu(s)$ (0) (+2) - (+2) - (0)
 - Magnesium has been oxidised because its oxidation number has increased from 0 to +2. Copper (II) sulfate has been reduced because the oxidation number of the Cu^{2+} ion has decreased from +2 to 0. (2)
 - ii) $\operatorname{Fe}_2O_3(s) + 3\operatorname{CO}(g) \longrightarrow 2\operatorname{Fe}(s) + 3\operatorname{CO}_2(g)$ $(+3)(-2) \quad (+2)(-2) \quad (0) \quad (+4)(-2)$ Carbon monoxide has been oxidised because the oxidation number of the carbon atom increased from +2 to +4. Iron(III) oxide has been reduced because the oxidation number of each Fe³⁺ ion decreased from +3 to 0. (2)
- 2. a) i) An oxidising agent causes the oxidation number of an element in its free state or an element in a compound to increase. (1)
 - ii) A reducing agent causes the oxidation number of an element in its free state or an element in a compound to decrease. (1)

b) i)
$$S(s) + O_2(s) \longrightarrow SO_2(g)$$

(0) (-2)

Sulfur is acting as a reducing agent because it caused the oxidation number of each oxygen atom in the oxygen molecule to decrease from 0 to -2. (2)

- ii) Mg(s) + S(s) → MgS(s) (0) (+2) Sulfur is acting as an oxidising agent because it caused the oxidation number of the magnesium atom to increase from 0 to +2. (2)
- c) $CH_4(g) + 4CuO(s) \longrightarrow 4Cu(s) + CO_2(g) + 2H_2O(g)$ (-4)(+1) (+2)(-2) (0) (+4)(-2) (+1)(-2) Copper(II) oxide is the oxidising agent because it caused the oxidation number of the carbon atom in the methane molecule to increase from -4 to +4. Methane is the reducing agent because it caused the oxidation number of the Cu²⁺ ion in the copper(II) oxide to decrease from +2 to 0. (2)

d) i)

	ŀ	Results of test if			
Test reagent	Josh's suggestion is correct	Richard's suggestion is correct	Matthieu's suggestion is correct		
Acidified potassium manganate(VII) solution	Remains purple	Remains purple	Turns colourless		
or Acidified potassium dichromate(VI) solution	Remains orange	Remains orange	Turns green		
Potassium iodide solution	Turns brown	Remains colourless	Remains colourless		

(6)

ii) Explanation: The reducing agent in the bottle reduces the purple MnO_4^- ion to the colourless Mn^{2+} ion.

Reagent: Acidified potassium dichromate(VI) solution Or

Explanation: The reducing agent in the bottle reduces the orange dichromate(VI) ion to the green Cr³⁺ ion. Reagent: Acidified potassium manganate(VII)

solution.

(2)

- iii) Acidified hydrogen peroxide or sulfur dioxide (1)
- e) i) Enzymes in the cells on the cut surface are exposed to oxygen in the air and they oxidise certain chemicals in the cells to brown compounds called melanins. (1)
 - ii) Sodium chlorate(I) oxidises coloured chemicals in stains to their colourless form. (1)
 - iii) Sodium sulfite prevents oxidation which causes food to spoil and prevents browning by reducing any melanins back to their colourless form. (2)
 - iv) Oxygen and moisture in the air oxidise the iron in the nails forming hydrated iron(III) oxide which is rust.
 (1)

A9 Electrochemistry

- a) i) A conductor allows electricity to pass through, whereas a non-conductor does not allow electricity to pass through. (1)
 - ii)

- b) i) An electrolyte is a compound that forms ions when molten or in aqueous solution. (1)
 - ii) A strong electrolyte is fully ionised when dissolved in water, so the solution has a high concentration of ions. A weak electrolyte is partially ionised when dissolved in water, so the solution has a low concentration of ions. (2)
 - iii) Pure water contains an extremely low concentration of H⁺ ions and OH⁻ ions which have been formed by ionisation of water molecule. (2)

iv)	Metallic conduction	Electrolytic conduction
	mobile electrons carry the electricity through the metal	mobile ions carry the electricity through the electrolyte
	the metal remains unchanged	the electrolyte decomposes

(4)

- c) i) Electrolysis is the chemical change which occurs when an electric current is passed through an electrolyte.
 The anode is the positive electrode, connected to the positive terminal of the battery.
 The cathode is the negative electrode, connected to the negative terminal of the battery. (3)
 - ii) Oxidation occurs at the anode because anions lose electrons at the anode. Reduction occurs at the cathode because cations gain electrons at the cathode.
 (2)

$$\mathbf{X}: 2Br^{-}(l) \longrightarrow Br_{2}(g) + 2e^{-}$$
$$\mathbf{Z}: Pb^{2+}(l) + 2e^{-} \longrightarrow Pb(l)$$
(4)

- 2. a) A series which places metals in order of the ease with which they ionise. (1)
 - b) A reaction would occur. The atoms of metal F would ionise and the Zn²⁺ ions from the zinc sulfate would be discharged because metal F is higher than zinc in the electrochemical series. (2)
 - c) A reaction would not occur. The atoms of metal G will remain as atoms and the H⁺ ions in the acid will remain as ions because metal G is lower than hydrogen in the electrochemical series. (2)
 - **d**) $Mg(s) + CuSO_4(aq) \longrightarrow MgSO_4(aq) + Cu(s)$ (1)
- 3. a) The nature of the anode The concentration of the electrolyte The position of the anion in the electrochemical series of anions (3)
 - b) i) In Cell A, the OH⁻ ions would be discharged in preference to the Cl⁻ ions and oxygen gas would be produced. In Cell B, the Cl⁻ ions would discharged in preference to OH⁻ ions and chlorine gas would be produced.
 - ii) The H⁺ ions would be discharged in preference to the Na⁺ in both cells and hydrogen gas would be produced. (1)
 - iii) In Cell A the electrolyte becomes more concentrated and in Cell B the electrolyte becomes alkaline. (2)

c) Mass of 1 mol $H_2 = 2g$ \therefore number of moles in 3.0 g $H_2 = \frac{3.0}{2}$ mol = 1.5 mol $2H^+(g) + 2e^- \longrightarrow H_2(g)$ 2 mol electrons form 1 mol H_2 $\therefore 2 \times 96500 \text{ C}$ form 1 mol H_2 and $1.5 \times 2 \times 96500 \text{ C}$ form 1.5 mol $H_2 = 289500 \text{ C}$ $289500 \text{ C} = 5.0 \times \text{time}$ $\therefore \text{ time} = \frac{289500}{5.0} \text{ s} = 57900 \text{ s} = 16 \text{ hours 5 minutes}$ (4) 5. a) i) Anodising is used to increase the thickness of

- a) i) Anothing is used to increase the interface of the layer of aluminium oxide on the surface of aluminium objects such as saucepans and window frames. (1)
 ii) The aluminium oxide layer protects the saucepan
 - against corrosion. The aluminium oxide layer readily absorbs dyes so the saucepan can be attractively coloured. (2)
- b) i) The anode: a lump of silver The cathode: the spoon to be plated The electrolyte: silver nitrate solution (3)
 ii) At the anode: Ag(s) → Ag⁺(ag) + e⁻
 - ii) At the anode: Ag(s) → Ag⁺(aq) + e⁻ At the cathode: Ag⁺(aq) + e⁻ → Ag(s) (2)
 iii) Quantity of electricity = 2.0 × [(32 × 60) + 10] C
 - $\begin{array}{l} \text{m) Quantity of electricity} = 2.0 \times [(32 \times 60) + 10] \text{ C} \\ = 3860 \text{ C} \\ 1 \text{ mol electrons form 1 mol Ag} \\ \therefore 96500 \text{ C form 1 mol Ag} \\ \text{and 3860 C form } \frac{1}{96500} \times 3860 \text{ mol Ag} = \\ \textbf{0.04 mol Ag} \\ \text{Mass of 1 mol Ag} = 108 \text{ g} \\ \therefore \text{ mass of 0.04 mol Ag} = 0.04 \times 108 \text{ g} = \textbf{4.32 g} \end{array}$ (3)
- c) i) The anode would be made out of the lump of impure copper, the cathode would be a thin strip of pure copper and the electrolyte would be copper(II) sulfate solution. The copper atoms in the anode ionise and enter the electrolyte and Cu²⁺ ions from the electrolyte are discharged at the cathode forming pure copper. (4)
 - ii) The H⁺ ions in the electrolyte would be preferentially discharged at the cathode and not the ions of the metal to be purified, since the H⁺ ions are lower in the electrochemical series.
 (2)

A10 Rates of reaction

 a) Rate of reaction is a measured change in the concentration of a reactant or product with time at a stated temperature. (1)

ii) Volume of CO₂ produced in the first minute = 88 cm³
Average rate of reaction in the first minute
=
$$\frac{88}{60}$$
 cm³ s⁻¹ = 1.47 cm³ s⁻¹ (1)
Volume of CO₂ produced in the second minute
= 118 - 88 cm³ = 30 cm³
Average rate of reaction in the second minute
= $\frac{30}{60}$ cm³ s⁻¹ = 0.50 cm³ s⁻¹ (1)

- iv) The concentration of the reactant particles was higher in the first minute than in the second minute because many of the particles had collided and reacted by the second minute. The frequency of collision between the particles was, therefore, higher in the first minute than in the second minute. (3)
- v) The reaction had reached completion and stopped because all the calcium carbonate had reacted and there was none left to react. (1)

a) Concentration Temperature Surface area or particle size

Presence or absence of a catalyst

 ii) The magnesium powder had a larger surface area than the ribbon which caused the rate of reaction to be faster because the frequency of particle collisions was higher. (2)

- iii) Effect: The rate of the reaction would increase.
 Explanation: The reactant particles gained kinetic energy which caused them to move faster and to collide more frequently. The particles also collided with more energy, therefore more collisions occurred with sufficient activation energy for the particles to react. Both factors increased the chances of effective collisions. (4)
- iv) Effect: The rate of reaction would decrease
 Explanation: The number of particles per unit volume of acid has decreased. The particles would, therefore, collide less frequently decreasing the chances of effective collisions. (3)
- c) i) A catalyst alters the rate of a reaction without itself undergoing any permanent chemical change. (1)
 - A catalyst provides an alternative pathway for a reaction which requires less activation energy than the normal pathway, therefore, more collisions occur with sufficient activation energy for the particles to react which increases the chances of effective collisions. (2)

A11 Energetics

- a) An exothermic reaction produces heat, causing the reaction mixture and its surroundings to get hotter. An endothermic reaction absorbs heat, causing the reaction mixture and its surroundings to get colder. (2)
 - b) i) The reaction is endothermic because the energy content of the products is greater than the energy content of the reactants, therefore, energy is absorbed from the surroundings. (2)
 ii) A: Enthalpy of the reactants
 - **B:** Activation energy
 - C: Enthalpy change D: Enthalpy of the products (4)

- c) i) Exothermic (1)
 - ii) The enthalpy change, ΔH , is negative indicating
that energy was lost during the reaction. (1)
 - iii) The energy content of the reactants is greater than the energy content of the products, therefore, energy is released to the surroundings. (2)

(4)

2.	a)	i) ii)	Heat of neutralisation is the heat change which occurs when 1 mol of water is produced in a reaction between an acid and an alkali.	(1)
		11)	occurring in both reactions between the OH ⁻ ion of the alkali and the H ⁺ ions of the acid which	15 (2)
	1 \	•	produces 1 mol of water. 29.5 ± 29.9 oc 20.7 o	(2)
	D)	1)	Average initial temperature $\frac{1}{2}$ $C = 29.7$	C
			\therefore temperature increase = 35.8 - 29.7 °C = 6.1 °C	(-)
		••		(2)
		11)	Mass of solution = 100 g	
			-2562 I	(1)
		iii)	The density of the solution is 1 g cm^{-3}	(1)
		111)	Negligible heat is lost to the surroundings.	(2)
		iv)	$2NaOH(ag) + H SO (ag) \longrightarrow Na SO (ag) +$	(-)
		,	$2H_{2}O(l)$	(2)
		v)	1000 cm ³ NaOH(aq) contains 1.0 mol NaOH	. ,
			\therefore 50 cm ³ NaOH(aq) contains $\frac{1.0}{1000} \times$ 50 mol NaC)H
			= 0.05 mol NaOH	
			2 mol NaOH produces 2 mol H_2O	
			\therefore 0.05 mol NaOH produces 0.05 mol H ₂ O	(2)
		vi)	Heat change for making 0.05 mole $H_2O = 2562$ J	
			\therefore heat change for making 1 mol H ₂ O = $\frac{2502}{0.05}$ J =	
			51 240 J = 51.24 kJ	(1)
		::)	Heat of neutralisation, $\Delta H_{1} = -51.24$ KJ mol ⁻¹	(1)
		VII)	activation ener	av
	1	2Na	$aOH_{(aq)} + H_2SO_{4(aq)}$	97
	L.			
	len			
	Cor		ΔH = -51.24 kJ mo	ol ^{−1}
	rgy		$\left \frac{1}{2} \operatorname{Na}_2 \operatorname{SO}_{4(2n)} + 2H_2 \operatorname{C} \right $	D(I)
	ene		▼ 2 4(aq) 2 5	_
	-			

(3)

c) The heat of solution is the heat change which occurs when 1 mol of solute dissolves in such a volume of solvent that further dilution by the solvent produces no further heat change. (1)

course of reaction

d) i) Mass of 1 mol KNO₃ = 39 + 14 + (3 × 16) g = 101 g
 ∴ number of moles in 6.06 g = ^{6.06}/₁₀₁ mol = 0.06 mol
 Heat change for dissolving 0.06 mol KNO₃ = 75 ×

4.2 × 5.7 J = 1795.5 J \therefore heat change for dissolving 1 mol KNO₃ = $\frac{1795.5}{0.06}$ J

- = 29 925 J = 29.925 kJ
- Heat of solution, ΔH , = +29.925 kJ mol⁻¹ (3) ii) Endothermic (1)
- iii) More energy is absorbed from the surroundings to break the ionic bonds between the K⁺ ions and the NO₃⁻ ion and the intermolecular forces between the water molecules than is released when the attractions form between the ions and the water molecules during solvation. (3)

B1 Sources of hydrocarbon

compounds

1.	a)	i)	Hydrocarbons are organic compounds containing	
			carbon and hydrogen atoms only.	(1)
		ii)	Methane	
			Ethane	
			Propane	
			Butane	(2)
		iii)	Petroleum is an oily liquid that is a complex	
			mixture of solid and gaseous hydrocarbons	
			dissolved in liquid hydrocarbons.	(2)
		iv)	Fractional distillation	(1)
		v)	Crude oil is separated into different fractions	
			in a fractionating tower .	(1)
		vi)	Crude oil is heated and the vapours rise up the	
			fractionating tower. The temperature of the tow	er
			decreases upwards and the vapours condense	
			on bubble caps at different levels up the tower	
			depending on their boiling points; the lower the	
			boiling point, the higher the vapour will rise	
			before condensing. The liquids are tapped off at	
			different levels and any gases that don't condense	
			are removed at the top of the tower.	(4)
	b)	Any	four of the following named fractions:	

Name of fraction	Use 1	Use 2
refinery gas	as fuel	to manufacture many petrochemicals
petrol or gasoline	as fuel	as solvents
kerosene oil or paraffin	as fuel	cracked into smaller hydrocarbons
diesel oil	as fuel	cracked into smaller hydrocarbons
fuel oils, lubricating oils and waxes	as fuels and lubricants	to make polishing waxes, petroleum jelly, candles
bitumen or asphalt	for surfacing roads	for roofing
		(8)

- 2. a) i) Long-chain hydrocarbon molecules are broken down into shorter chain hydrocarbon molecules by breaking carbon-carbon bonds. (1)
 - ii) Thermal cracking: This uses a high temperature and a high pressure. Catalytic cracking: This uses a catalyst and slightly lower temperatures and much lower pressures than used in thermal cracking. (4)
 - iii) Cracking increases production of the smaller, more useful hydrocarbon molecules. Fractional distillation produces insufficient of these molecules and an excess of the larger, less useful molecules. (2) Cracking increases production of the more useful alkenes. Fractional distillation does not produce these molecules and cracking always results in the formation of at least one alkene. (2)

B2 Organic chemistry – an introduction

 ii) A carbon atom has four valence electrons, so it can bond covalently with other carbon atoms in very many ways and it can bond covalently with atoms of other non-metallic elements. (1)

- b) i) A group of organic compounds which all possess the same functional group (1)
 - ii) Any four of the following: All members have the same functional group. All members can be represented by the same general formula. Each member differs from the member before or after it by a -CH₂- group. Each member differs from the member before or after it by a relative molecular mass of 14. All members possess similar chemical properties. Members show a gradual change in their physical properties as their molar mass increases. All members can be prepared by the same general method. (4)

c)	i)	A and C	(1)
	ii)	The alkene series.	(1)
	iii)	They both contain the carbon-carbon	
		double bond	(1)
	iv)	$C_n H_{2n}$	(1)

d) Complete the following table.

Name of com- pound	Name of homolo- gous series	Condensed formula	Fully displayed structural formula
ethane	alkane	$CH_3CH_3 \text{ or}$ C_2H_6	H H H—C—C—H H
butene	alkene	CH ₃ CH ₂ CH=CH ₂ or C ₄ H ₈	$H = \begin{bmatrix} H & H & H \\ H & -C & -C & -C \\ H & H & H \\ H & H & H \end{bmatrix}$
propanoic acid	alkanoic acid or carboxylic acid	CH ₃ CH ₂ COOH or C ₂ H ₅ COOH	
methanol	alcohol or alkanol	СН ₃ ОН	н н—с—о—н н

- e) i) Butanoic acid
 - ii) Butene
- iii) Pentane
 - iv) Ethanol (4)
- 2. a) i) The occurrence of two or more organic compounds with the same molecular formula but different structural formulae. (1)
 - ii) By branching the chain of carbon atoms By changing the position of the functional group(2)
 - b)

(2)

17

(6)

B3 Reactions of carbon compounds

1. a) i) They contain only single bonds between carbon atoms. (1) ii) Alkanes are relatively unreactive because the single bonds between the carbon atoms are (2) strong. b) i) $CH_4(g) + 2O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$ $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$ (2) ii) The reactions are exothermic because they give out heat energy to the surroundings. (2)iii) The flame would be clear, blue and non-smoky. (1) iv) The ratio of carbon to hydrogen atoms in methane is low, therefore all the carbon is converted to carbon dioxide and no unreacted carbon remains in the flame. (2)c) i) Light (1)ii) Type of reaction: Substitution Explanation: The hydrogen atoms in each methane molecule are replaced, one at a time, by chlorine atoms. (2)iii) Equation: $CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g)$ Names of products: Monochloromethane and hydrogen chloride (2)iv) Equation: $CH_4(g) + 4Cl_2(g) \longrightarrow CCl_4(l) + 4HCl(g)$ Name of organic product: Tetrachloromethane (3) Any three of: d) i) Alkanes burn very easily when they are ignited. Alkanes release large amounts of energy when they burn. Alkanes burn with a clean, non-smoky flame. (3) Alkanes are easy to transport and store. ii) Alkanes are non-polar molecules, therefore they can dissolve non-polar solutes. (1)

		iii)	Biogas is mainly methane mixed with some	
)	carbon dioxide. It is produced by bacteria	
			breaking down waste organic matter, such as	
			manure, anaerobically in a biogas digester.	(2)
		iv)	Any two of:	
			It reduces the demand for non-renewable fossil fu	els.
			It reduces the amount of waste which has to be	
			disposed of.	
			It recycles soil nutrients, since the waste can be	(\mathbf{a})
r		;)	used as fertiliser.	(2)
2.	a)	1)	their molecules	(1)
		ii)	Alkenes are reactive because one bond in the	(1)
)	carbon–carbon double bond can break and the	
			carbon atom at either side can share its fourth	
			valence electron with atoms of other elements	
			which also have a valence electron to share.	(3)
	b)	i)	It requires the water to be in the form of steam,	a
			temperature of 300°C, a pressure of 70 atm and	(1)
		ii)	Addition	(4) (1)
		iii)	Addition	(1)
)	нн	
	Н		И П	
		Č:	$=$ C + H ₂ O \longrightarrow H $-$ C $-$ C	OH
	Н	/	`н	
			нн	(1)
		iv)	Fthanol	(1) (1)
	c)	i)	The bromine solution would change colour	(1)
	,	,	rapidly from red-brown to colourless.	(1)
		ii)	нннн	
			H - C - C - C - C - H	
			 H H Br Br H	
	1)	•	2,3-dibromopentane	(2)
	a)	1)	Conditions: A temperature of 150°C, a pressure	(2)
			Fountion: C H (g) + H (g) \longrightarrow C H (g)	(3)
		ii)	Propane $O_3 I_6(g) + I_2(g) = O_3 I_8(g)$	(1)
	e)	i)	Acidified potassium manganate(VII) solution.	(1)
		ii)	The acidified potassium manganate(VII)	
			solution would remain purple when added to	
			the cyclohexane because no reaction occurs. The	e
			acidified potassium manganate(VII) solution	
			would turn colourless when added to the	• •
			cyclonexene because the cyclonexene oxidises the purple MpQ^{-} ion to the colourloss Mp^{2+} ion	(4)
2	`	•\	purple MHO_4 for to the colouriess MH^- for.	(4)
3.	a)	1) ;;)	B and D Series: Alcohol series or alleged series	(1)
		11)	Reason: They both contain the hydroxyl function	mal
			group.	(2)
		iii)	An ester	(1)
		iv)	Soluble. D is polar because its molecules contain	1 . ,
			the polar hydroxyl group. Water is also polar an	d

polar solutes dissolve in polar solvents.

(3)

19

Disadvantages: Any two of:

They contain phosphates which cause eutrophication in aquatic environments, eventually leading to the death of aquatic organisms. Some are non-biodegradable and cause foam to build up in sewage systems and on waterways, which makes sewage treatment difficult and leads to the death of aquatic organisms. They are manufactured from petroleum and the supplies of petroleum are limited. (3)

6. a) A macromolecule formed by linking together 50 or more small molecules, known as monomers, usually (1)in chains.

b)	Addition polymerisation	Condensation polymerisation
	one product, the polymer, is produced	two products are produced: the polymer and another compound composed of small molecules
	the monomers which make up the polymer are all the same	the polymer is usually made from more than one type of monomer
	the empirical formula of the polymer is the same as that of the monomer that formed it	the empirical formula of the polymer is different from that of the monomers that formed it

- ii) Type of polymerisation: Condensation polymerisation Type of polymer: Polyester (2) iii) Any one of: Polyethylene terephthalate
 - Terylene Dacron
- iv) Ester linkage (1)v)

vi) Type of polymerisation: Addition polymerisation Type of polymer: Polyalkene (2)Polyamide (1)

C1 Characteristics of metals

- 1. a) i) A metal is an element whose atoms have a small number of valence electrons. This number is usually 1, 2 or 3. (1) ii) Metals are solid at room temperature: Room temperature is not hot enough to break the strong electrostatic forces of attraction between the cations and delocalised electrons. Metals are malleable: The atoms in a metal are all of the same type and size so, if force is applied, the atoms can roll over each other into new positions without the metallic bond breaking. Metals conduct electricity: The delocalised electrons from each metal atom are free to move and carry electricity. (3) iii) Metals have high melting and boiling points.
 - Metals have a shiny luster. (3) Metals have a high density. iv) When metals react to form ionic compounds the
 - metal atoms lose electrons. These lost electrons are given to the other reactant, causing that reactant to gain electrons (be reduced). (2)v) $Ca \longrightarrow Ca^{2+} + 2e^{-}$ (1)
 - b) i) (1)
 - $X(s) + H_2O(g) \longrightarrow XO(s) + H_2(g)$ ii) Magnesium (1)

(6)

(1)

(1)

c) 1)	1	1	1
Metal	Reaction when heated in air	Reaction with water	Reaction with dilute hydrochloric acid
copper	does not burn, but forms an oxide coating if heated very strongly	does not react with water or steam	no reaction occurs
sodium		reacts vigorously with cold water	reacts violently
aluminium	burns when heated strongly, especially if powdered	reacts with steam but does not react with cold or hot water	a vigorous reaction occur

ii) The reaction between sodium and water: $2Na(s) + 2H_2O(1) \longrightarrow 2NaOH(aq) + H_2(g)$ Aluminium reacting with oxygen: $4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$ Aluminium reacting with hydrochloric acid: $2Al(s) + 6HCl(aq) \longrightarrow 2AlCl_3(aq) + 3H_2(g)$ (6) 2. a) i) $CuO(s) + 2HCl(aq) \longrightarrow CuCl_2(aq) + H_2O(1)$ (2) ii) $CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(1)$ (2)

iii)
$$Mg(OH)_2(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) +$$

$$2H_2O(l)$$
 (2)

- (3) ii) Copper(II) nitrate: $2Cu(NO_3)_2(s) \longrightarrow 2CuO(s) + 4NO_2(g) + O_2(g)$ (4) Sodium nitrate: $2NaNO_3(s) \longrightarrow 2NaNO_2(s) + O_2(g)$ (4)
- c) Potassium carbonate is not decomposed by heat whereas magnesium carbonate is decomposed forming magnesium oxide and carbon dioxide. MgCO₃(s) → MgO(s) + CO₂(g) (3)

C2 Reactivity and extraction

of metals

1.	a)	i)	A list of metals arranged in order from the most	
			reactive to the least reactive.	(1)
		ii)	How easily the atoms of the metal ionise.	(1)
		iii)	R, calcium, magnesium, aluminium,	
			zinc, iron, Q	(3)
	b)	i)	Metal Y.	(1)
		ii)	$2X(OH)_3(s) \longrightarrow X_2O_3(s) + 3H_2O(g)$	(2)
		iii)	There would be a violent reaction.	(1)
	c)	i)	A reaction in which a metal in its free state takes	8
		•••	the place of another metal in a compound.	(1)
		11)	Calcium, Z, iron $M_{\pi}(a) + Z_{\pi}(c)$ $\rightarrow M_{\pi}(c) + Z_{\pi}(a)$	(1)
	1	III) .\	$\operatorname{Mg}(s) + \operatorname{ZnCl}_2(\operatorname{aq}) \longrightarrow \operatorname{MgCl}_2(\operatorname{aq}) + \operatorname{Zn}(s)$	(1)
	d)	i)	Identity of the pink solid: Copper	(2)
		::)	Ionic equation: $Cu^{-1}(aq) + 2e \longrightarrow Cu(s)$	(3)
		11)	entered the solution	
			Ionic equation: $Zn(s) \longrightarrow Zn^{2+}(ag) + 2e^{-}$	(3)
		iii)	It would gradually turn paler blue.	(1)
		iv)	The Cu ²⁺ ions, which give the copper(II) sulfate	
			solution its blue colour, were being discharged	
			from the solution.	(2)
2.	a)	i)	The extraction of a metal from its ore is a	
			reduction process.	(1)
		ii)	The position of the metal in the reactivity series.	(1)
		iii)	Method: Electrolysis of the molten ore of metal	A.
			Explanation: Metal A is high up in the reactivity	
			bard to reduce and need a powerful method of	
			reduction, this being electrolysis.	(3)
	b)	i)		(-)
	U)	1)		
			0000000	
	П		Correction of the second	
	卟			~
				-
			B anode	
			alumini	um
				(3)
		ii)	Bauxite or hydrated aluminium oxide	(1)
		111) iv)	$\operatorname{INa}_{3}\operatorname{AIF}_{6}$	(1)
		17)	reduces the amount of energy used during its	
			electrolysis.	
			The solution produced is a better conductor that	n
			the molten ore on its own.	(4)
		v)	At the anode: $2\Omega^{2-}(1) \longrightarrow \Omega(\alpha) + 4e^{-1}$	

At the anode: $2O^{2}(1) \longrightarrow O_{2}(g) + 4e$ At the cathode: $Al^{3+}(1) + 3e^{-} \longrightarrow Al(1)$ (4)

a)	i) ii)	Carbon monoxide. Iron is in the middle of the reactivity series and its ions are less stable than those of metals higher up and easier to reduce. A less powerful	(1)
		method of reduction which uses less energy and	ł
		is less expensive than electrolysis will reduce the	e (3)
	iii)	Haematite or iron(III) oxide	(3)
		Magnetite or iron(II, III) oxide	(2)
b)	i)	Coke or carbon	(2)
		Limestone or calcium carbonate	
	ii)	zone 3 zone 2 zone 1 R molten slag or calcium silicate	
		iron	(3)
	iii)	Zone 1: $C(s) + O_2(g) \longrightarrow CO_2(g)$	
		Zone 2: $CO_2(g) + C(s) \longrightarrow 2CO(g)$ Zone 3: $Ee O_2(s) + 3CO(g) \longrightarrow 2Ee(s) + 3CO(s)$	a)
		or Fe ₂ O ₃ (s) + 4CO(g) \rightarrow 3Fe(s) + 4CO ₂ (g)	5) (5)
	iv)	The reaction between the coke and the oxygen	(-)

- v) To heat the air that enters at the bottom of the blast furnace. (1)
- vi) Heat in the upper part of the furnace causes the calcium carbonate to decompose to form calcium oxide and carbon dioxide. The calcium oxide reacts with the silicon dioxide to form calcium silicate or slag which melts, runs down to the bottom of the blast furnace and is removed. (4)
 vii) Pig iron. (1)

C3 Uses of metals

3.

1.	a)	i)	Any two of the following:	
			It is resistant to corrosion	
			It is light in weight	
			It is malleable	(2)
		ii)	It is a good conductor of electricity	
			It is resistant to corrosion	(2)
		iii)	Any two of the following:	
			It is malleable and ductile	
			It is strong	
			It is easily welded	(2)
			-	

iv)	Aluminium	Lead
	Any two of the following:	To make weights for fishing and diving
	To make windowAs a radiation shieframesor as a shield for	
	To make cooking utensils	X-rays
	To make overhead electrical cables	
	To make foil for cooking	
		(4)
i)	A mixture of two or more	e metals (1)
ii)	The atoms of the metals i	n an alloy usually have
	different sizes. This change	ges the regular pattern of
	the atoms and makes it m	ore difficult for them to
•••	slide over each other whe	n force is applied. (2)
111)	About 95% aluminium ar	id 5% magnesium. (2)
iv)	Any two of the following:	
	It is more workable than a	aluminium.
	It is more resistant to corr	osion than aluminium.

b)

v) Steel

vi) Carbon (1)
vii) Name of alloy: Solder
Composition: About 60% lead and 40% tin
Use: To join metal items together
Reason for use: It has a lower melting point than
lead, so it melts more easily when joining the
metals. (5)

It is lighter in weight than aluminium.

(2)

(1)

C4 Impact of metals on living systems and the environment

- a) i) The surface of the metal is damaged by reacting with chemicals in the environment, mainly oxygen and moisture. The metal surface is usually oxidised to the metal oxide. (2)
 - ii) Advice: Use aluminium.
 Explanation: When aluminium corrodes it forms aluminium oxide which protects the metal from further corrosion because it is fairly unreactive and adheres to the metal. (3)
 iii) When iron corrodes it forms hydrated iron(III)
 - (iii) when from corrodes it forms hydrated from(iii) oxide or rust which does not adhere to the metal and so peels off. This exposes fresh iron to oxygen and moisture, and more rust forms and peels off. This continues causing the iron to gradually wear away.
 - b) i) To keep air containing oxygen and moisture out of the tubes (1)
 - ii) To remove any dissolved oxygen(1)iii) To prevent oxygen from the air dissolving back
into the water(1)
 - iv) To absorb moisture from the air (1)

V)	Test tube	Observations
	Α	rusts
	В	does not rust
	С	rusts
	D	does not rust

vi) 2. a)

Metal ion	Role in living organisms
iron	needed for the formation of haemoglobin in red blood cells
magnesium needed for the formation of chlorophyll in green plant	
calcium needed for the formation of calcium phosphate in bones and teeth	
zinc	important for the immune system to function properly <i>or</i> important for cells and tissues to grow and repair themselves
	. (4)

- b) i) Mercury remains in the environment and concentrates up food chains so that the top consumers, such as large fish, contain high concentrations of it in their tissues. (2)
 - ii) Name of disease: Minamata disease Symptoms: Mercury damages the central nervous system which causes muscular co-ordination, hearing, sight, speech and the sense of touch to be impaired. (3)
 - iii) Any two of the following metal ions:

Metal ion: Lead

Source: Disused lead-acid batteries *or* recycling of lead-acid batteries *or* extraction and refining of lead *or* using leaded petrol *or* lead based paints.

Harmful effect: It damages body tissues and organs, especially nervous tissue, *or* it affects the normal formation of red blood cells resulting in anaemia, *or* it affects brain development in children

Metal ion: Cadmium

Source: Disused nickel–cadmium batteries, *or* the combustion of fossil fuels, *or* cigarette smoke, *or* the combustion of fossil fuels, *or* the extraction and refining of metals, *or* the manufacture of paint and certain plastics

Harmful effect: It damages the lungs, kidneys and liver *or* it leads to osteoporosis

Metal ion: Arsenic

Source: Mining of certain metals, *or* the extraction and purification of metals, *or* the combustion of fossil fuels.

Harmful effect: It damages the nervous system and heart, *or* it can cause cancer (4)

iv) Recycling any items containing heavy metals (1)

C5 Non-metals

1.	a)	i)	A non-metal is an element whose atoms usually	
			have a large number of valence electrons. This	
			number is usually 5, 6, 7 or 8.	(2)
		ii)	Melting and boiling points: They usually have lo	W
			melting and boiling points.	
			Conductivity: They are poor conductors of	
			electricity and heat.	
			Luster: Solid non-metals are dull.	
			Hardness: Solid non-metals are brittle.	
			Density: They usually have low densities.	(5)
	b)	i)	When non-metals react with metals, the non-me atoms gain electrons from the metal atoms causing	tal ng
			the metal atoms to lose electrons (be oxidised).	(2)

ii)

(4) (1)

non-metal	Equation for the reaction with calcium	Name of the product
oxygen	$2Ca(s) + 2O_2(g) \longrightarrow 2CaO(s)$	calcium oxide
hydrogen	$Ca(s) + H_2(g) \longrightarrow CaH_2(s)$	calcium hydride
nitrogen	$3Ca(s) + N_2(g) \longrightarrow Ca_3N_2(s)$	calcium nitride
chlorine	$Ca(s) + Cl_2(g) \longrightarrow CaCl_2(s)$	calcium chloride
sulfur	$Ca(s) + S(s) \longrightarrow CaS(s)$	calcium sulfide
		(10)

	iii)	$2KI(aq) + CI_2(g) \longrightarrow 2KCI(aq) + I_2(aq)$	(2)
	iv)	If the oxygen supply is limited:	
		$2C(s) + O_2(g) \longrightarrow 2CO(g)$	
		If the oxygen supply is plentiful:	
		$C(s) + O_2(g) \longrightarrow CO_2(g)$	(3)
c)	i)	Hydrogen	
		Carbon	
		Sulfur	(3)
	ii)	Oxygen	(1)

2. a) i)

	Oxygen	Carbon dioxide
Liquid X	hydrogen peroxide	hydrochloric acid
Solid Y	manganese(IV) oxide	calcium carbonate
Liquid Z	concentrated sulfuric acid	concentrated sulfuric acid

- (6)ii) To remove any water vapour from the gas(1)iii) Anhydrous calcium chloride(1)iv) Upward displacement of air(1)v) Carbon dioxide is denser than air so sinks,
- v) Carbon dioxide is denser than air so sinks, displacing the air upwards (1)

- c) As a bleaching agent: sodium chlorate(I) and sulfur dioxide
 - As a food preservative: sulfur dioxide
 - To make ceramics: metal silicates
 - In the manufacture of glass: sodium carbonate and silicon dioxide

- atmosphere which allows more ultraviolet light to reach the Earth's surface. This is leading to increased numbers of people developing skin cancer, cataracts and depressed immune systems. (3)
- b) i) Burning fossil fuels Deforestation (2) ii)

- iii) It is contributing to the Earth gradually getting warmer, known as global warming. Global warming is starting to cause polar ice caps and glaciers to melt, sea levels to rise, low-lying coastal areas to flood, changes in the global climate, more severe weather patterns and ocean acidification. (4)
- c) i) The rapid growth of green plants and algae in aquatic environments (1)
 - ii) Fertilisers used in agriculture Synthetic detergents or soapless detergents (2)
 - iii) The water turns green and the plants and algae that die and are decomposed by aerobic bacteria. This uses up the dissolved oxygen and the shortage of oxygen then causes the death of other aquatic organisms
 (3)
- d) i) Combustion of fossil fuels, especially coal (1)
 ii) Acid rain (1)
- e) Most plastics are non-biodegradable so require large areas of land for their disposal.
 Some plastics release toxic chemicals which remain in the environment after their disposal.
 Some plastics produce toxic chemicals if they are disposed of by being burnt in incinerators. (3)

(6)

- 5. a) i) When water evaporates from the surface of organisms it removes a lot of heat energy which makes sweating and transpiration efficient cooling methods. (2)
 - ii) The bodies of living organisms can absorb a lot of heat energy without their temperatures changing much, so they can survive extremes of temperature. Also, the temperatures of large bodies of water do not change as much as atmospheric temperatures change, so aquatic organisms do not experience extreme temperature changes. (4)
 - b) i) Water has a maximum density at 4°C or as water cools down below 4°C its density decreases. (1)
 - When a lake or a pond freezes, ice forms at the surface and the warmer, denser water stays below the ice, which allows aquatic organisms to survive under the ice.
 (2)
 - c) i) Water molecules are polar, therefore water can dissolve both ionic compounds and covalent compounds that are polar. (2)
 - ii) Any two of the following: So that chemicals in the cells of organisms can be dissolved and chemical reactions can occur So that useful substances can be dissolved and absorbed by living organisms So that useful substances can be dissolved and carried around the bodies of organisms So that waste products can be dissolved and excreted from organisms
 (2)
 - iii) Any two of the following: Water can become polluted as a result of dissolved chemicals. Water can become hard. Mineral salts can be leached out of the soil. (2)
 d) i) Tube A (1)
 ii) Dissolved calcium and magnesium salts or the
 - ii) Dissolved calcium and magnesium salts *or* the presence of Ca²⁺ and Mg²⁺ ions in the water. (2)
 iii) 2C₀H₀COONa(aq) + Ca²⁺(aq) →

$$(C_{17}H_{35}COO)_{2}Ca(s) + 2Na^{+}(aq)$$
(2)
iv) Any one of the following:

- iv) Any one of the following: Scum forms an unpleasant grey, greasy layer around sinks and showers. Scum discolours clothes. Hard water wastes soap as more is needed. Hard water causes limescale to build up in kettles, around taps and showerheads and in hot-water pipes. (1)
 v) Types: Temporary hardness and permanent
 - hardness Differences: Temporary hardness is caused by dissolved calcium hydrogen carbonate and magnesium hydrogen carbonate and can be removed by boiling the water. Permanent hardness is caused by dissolved calcium sulfate and magnesium sulfate and cannot be removed by boiling. (4)

- 6. a) i) It kills micro-organisms in the water. (1)
 ii) Dissolved Ca²⁺ and Mg²⁺ ions are removed. (1)
 - b) i) Method: Any dissolved calcium and magnesium hydrogen carbonate decompose forming insoluble calcium and magnesium carbonate which precipitate out.
 Equation: Ca(HCO₃)₂(aq) → CaCO₃(s) +

ii)

 $H_2O(l) + CO_2(g)$ (2) Method: The dissolved Ca²⁺ and Mg²⁺ ions react with the CO₂²⁻ ions from the sodium carbonate

- forming insoluble calcium and magnesium carbonate which precipitate out. Equation: $Ca^{2+}(aq) + CO_{2}^{2-}(aq) \longrightarrow CaCO_{3}(s)$
- (2) iii) Method: The Ca²⁺ or Mg²⁺ ions displace the Na⁺ ions in the ion-exchange resin and they are absorbed into the resin. Equation: Ca²⁺(aq) + Na₂Z(s) \longrightarrow CaZ(s) + 2Na⁺(aq) (3)
- 7. a) i) The utilisation of a set of principles that reduces or eliminates the use and generation of hazardous substances in the design, manufacture and application of chemical products. (1)
 - ii) Any three of the following: It reduces pollution. It reduces wastage. It reduces the use of energy. It reduces the use of natural resources. Safer products are produced. (3)

b) i) Prevent waste.
 Design safer chemicals and products.
 Minimise the potential for accidents.
 Increase energy efficiency.

Use **catalysts** rather than stoichiometric reagents. Analyse in real-time to prevent **pollution**. (7) **ii)** Maximise atom economy: Chemical processes

which incorporate most or all of the starting materials into the final products should be used.

Use renewable feedstocks: The raw materials used in chemical processes should be renewable.

Design for degredation: Chemical products should be designed so that they break down into harmless products when their useful life ends. (3)

C6 Qualitative analysis

a)	i)	Cation: Ca ²⁺ ion	
		Anion: I⁻ ion	(2)
	ii)	$Ca^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Ca(OH)_{2}(s)$	(2)
	iii)	Calcium hydroxide is basic so it did not react	
		with the sodium hydroxide.	(1)
	iv)	$Ag^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s)$	(1)
b)	i)	Shakira would make a solution of each solid in	
		distilled water and add aqueous ammonia to ea	ch
		until it was in excess and she would look to see	if
		the precipitate remained or dissolved.	(2)

ii) A white precipitate would form in each and then dissolve in X and remain in Y. (2)

1.

iii)	Test	Observations	Inferences
		• A white precipitate formed.	
		• The precipitate dissolved in excess.	
		• A white precipitate formed.	
		• The precipitate remained in excess.	
		• A bright yellow precipitate formed.	
		• A brown gas was evolved.	
		• The glowing splint relit.	
			(7)

iv) Concentrated sulfuric acid and copper turnings.

v)	A blue solution and a brown gas would be	formed
	on heating.	(2)

(2)

Test	Observations	Inferences
		• Ammonia gas was produced.
		• NH_4^+ ions present.
		• Fe ²⁺ ions present.
		Ionic equation:
		$Fe^{2+}(aq) + 2OH^{-}(aq)$ $\longrightarrow Fe(OH)_{2}(s)$
		• CO_3^{2-} , SO_3^{2-} or SO_4^{2-} ions present.
		• SO_4^{2-} ions present.
		Ionic equation:
		$Ba^{2+}(aq) + SO_4^{2-}(aq)$ $\longrightarrow BaSO_4(s)$
	•	

- 2. a) Q: Copper(II) carbonateR: Copper(II) oxideS: Carbon dioxide
 - T: Copper(II) nitrate
 - U: Copper(II) hydroxide

```
V: Calcium carbonate (6)
```

b) i) $CuCO_3(s) \longrightarrow CuO(s) + CO_2(g)$ (1) ii) $Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) +$

$$H_2O(l) \quad (2)$$
iii) $CuO(s) + 2HNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) +$

c)
$$Cu^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Cu(OH)_{2}(s)$$
 (2)

- d) i) A blue precipitate would form, but it would dissolve forming a deep blue solution on the
 - addition of excess aqueous ammonia. (2) ii) Copper(II) hydroxide is basic and does not react with sodium hydroxide, however, it does react with ammonium hydroxide forming a soluble salt which dissolves. (1)

- e) $CaCO_3(s) + CO_2(g) + H_2O(l) \longrightarrow Ca(HCO_3)_2(aq)$ (1)
- f) Add dilute hydrochloric or nitric acid to Q and test the gas produced using limewater. Effervescence should occur and a white precipitate should form in the limewater or Add a four drops of concentrated sulfuric acid to Q and

Add a few drops of concentrated sulfuric acid to Q and test the gas produced using limewater. Effervescence should occur and a white precipitate should form in the limewater. (2)

- ii) Sulfur dioxide is a reducing agent and it reduced the purple MnO₄⁻ ion to the colourless Mn²⁺ ion. (2)
- c) i) Chlorine

ii)	The chlorine reacted with the water in the paper		
	and formed two acids, hydrochloric acid and		
	chloric(I) acid. Both acids caused the litmus to		
	turn red and the chloric(I) acid oxidised the red		
	litmus to a colourless compound.	(3)	
iii)	$Cl_{2}(g) + H_{2}O(l) \longrightarrow HCl(aq) + HClO(aq)$	(1)	
iv)	By its colour, it is a yellow-green gas.	(1)	

- d) The heat causes hydrogen to react explosively with the oxygen in the air. (1)
- e) Anhydrous cobalt(II) chloride is blue and water vapour changes it to hydrated cobalt(II) chloride which is pink.
 (2)

(1)