

AQA A-level Physics Year 2

Scheme of Work – Optional Units

Scheme of Work AQA A-level Physics Year 2 of A-level

This course covers the requirements of the second year of AQA AS and A-level Physics specification. These schemes of work are designed to accompany the use of Collins' AQA A-level Physics Year 2 Student Book.

We have assumed that 120 one-hour lessons are taught during the year, 95 of which will cover the Specification's Core units. Each lesson is matched to the Specification content. It is suggested in which lessons the six Required Practicals may be carried out.

Outline schemes have been provided for each of the five Option units, allowing 25 lessons for each.

The schemes of work suggested are of course flexible, and editable, to correspond with your timetabling and to enable you to plan your own route through the course. Time is allowed in the schemes for consolidation and exam questions practice at the end of each topic. This should help enable students to draw together all their knowledge from earlier in the course.

Scheme of Work AQA A-level Physics Year 2 of A-level

Option Unit: Astrophysics (25 hours)

One-	Specification Content
hour	
lessons	
CHAPTER	R 11 TELESCOPES (6 hours)
1	3.9.1.1 Astronomical telescope consisting of two converging lenses
	Ray diagram to show the image formation in normal adjustment
	Focal lengths of the lenses
	Angular magnification in normal adjustment
	angle subtended by image at eye
	angle subtended by object at unaided eye
	$M = \frac{f_0}{f_0}$
	f_{e}
2	3.9.1.2 Qualitative treatment of spherical and chromatic aberration
	3.9.1.2 Reflecting telescopes
	Cassegrain arrangement using a parabolic concave primary mirror and convex secondary mirror
	Ray diagram to show path of rays through telescope up to the eyepiece
	Relative merits of reflectors and refractors
3	3.9.1.4 Minimum angular resolution of telescope
	Rayleigh criterion, $\theta \approx \lambda/D$
	Students should be familiar with the rad as the unit of angle
	Collecting power is proportional to diameter ²
4	3.9.1.3 Single dish radio telescopes, I-R, U-V and X-rays telescopes
	Similarities and differences of radio telescopes compared to optical telescopes
	Discussion should include structure, positioning and use, together with comparisons of resolving and collecting powers
5	3.9.1.4 Comparison of the eye and CCD as detectors in terms of quantum efficiency, resolution, and convenience of use
	No knowledge of the structure of the CCD is required
6	(Consolidation and exam questions practice)

One-	Specification Content
hour	
lessons	
CHAPTE	R 12 CLASSIFICATION OF STARS (6 hours)
1	3.9.2.1 Classification by luminosity
	Apparent magnitude, <i>m</i>
	The Hipparchus scale
	Dimmest visible stars have a magnitude of 6
2	3.9.2.3 Inverse square law, assumptions in its application
	3.9.2.1 Relation between brightness and apparent magnitude. Difference of 1 on magnitude scale is equal to an intensity ratio of 2.51
	Brightness is a subjective scale of measurement
	(Maths review of manipulation of logarithms)
3	3.9.2.2 Absolute magnitude, M
	Parsec and light year
	Definition of <i>M</i> , relation to <i>m</i> :
	$m = M - \Gamma \log^2 d$
	$\frac{11-11-5\log -1}{10}$
4	3.9.2.3 Classification by temperature, black-body radiation
	Stefan's law
	$P = \sigma A T^4$
	and Wien's displacement law
	$\lambda_{max}T$ = constant = 2.9 × 10 ⁻³ m K
	General shape of black-body curves, use of Wien's displacement law to estimate black-body temperature of sources
	Experimental verification is not required
	Assumption that a star is a black body
	Use of Stefan's law to compare the power output, temperature and size of stars
5	3.9.2.4 Principle of the use of stellar spectral classes
	Description of the main classes:

One-	Specification Content				
hour					
lessons					
	Spectral class	Intrinsic colour	Temperature / K	Prominent absorption lines	
	0	blue	25 000 – 50 000	He⁺, He, H	•
	В	blue	11 000 – 25 000	He, H	-
	A	blue-white	7 500 – 11 000	H (strongest)	
				ionized metals	
	F	white	6 000 – 7 500	ionized metals	-
	G	yellow-white	5 000 - 6 000	ionized & neutral metals	-
	к	orange	3 500 – 5 000	neutral metals	
	М	red	< 3 500	neutral atoms, TiO	-
	Temperature	e related to at	osorption spectra limited t	o hydrogen Balmer absorption line	es: requirement for atoms in an $n = 2$ state
6	(Consolidatio	on and exam a	questions practice)		
CHAPTER	R 13 STELLA	R EVOLUTIO	N (6 hours)		
1	3.9.2.5 The I	Hertzsprung-R	ussell (HR) diagram		
	Stellar evolu	tion <i>(general</i>	overview from protostar to	stable main sequence star)	
2	General sha	pe (of HR diag	ram): main sequence, dwa	rfs and giants	
2	Axis scales r	ange from –10) to +15 (absolute magnitu	de) and 50 000 K to 2500 K (tempe	erature)or OBAFGKM (spectral class)
	Students sho	buid be familia	ar with the position of the	Sun on the HR diagram	unce) to white dwarf
2			a star similar to our Sun on	the HK diagram from (main seque	ince) to write dwarr
5	Defining pro	nerties: ranid	increase in absolute mag	itude of supernovae: composition	and density of neutron stars
4	3 9 2 6 Esca	$\frac{perties}{rapid}$	for black holes		
	Calculation	of the radius o	f the event horizon for a b	lack hole. Schwarzschild radius. R	s ≈ 2 <i>GM/c</i> ²
	Gamma ray	bursts due to	the collapse of supergiant	stars to form neutron stars or blac	k holes
	Comparison	of energy out	put with total energy outp	ut of the Sun	
	Supermassiv	e black holes	at the centre of galaxies		
5	3.9.2.6 Use o	of type 1a sup	ernovae as standard candl	es to determine distances	
	Students sho	ould be familia	ar with the light curve of ty	pical type 1a supernovae	
	Controversy	concerning ad	ccelerating Universe and d	ark energy (introduction)	
6	(Consolidatio	on and exam o	questions practice)		
CHAPTER	CHAPTER 14 COSMOLOGY (7 hours)				
1	3.9.3.1 Dopp	oler effect			

One-	Specification Content
hour	
lessons	
	$\Delta f/f = v/c$
	$z = \Delta \lambda / \lambda = -v/c$
	for v << c applied to optical and radio frequencies
2	3.9.3.1 Calculations on binary stars viewed in the plane of orbit
	Galaxies and quasars
3	3.9.3.2 Hubble's law
	Recession velocity v = Hd
	Simple interpretation as expansion of universe; estimation of age of universe, assuming H is constant
	Qualitative treatment of Big Bang theory
	3.9.2.6 Controversy concerning accelerating Universe and dark energy
4	3.9.3.2 Qualitative treatment of Big Bang theory including evidence from cosmological microwave background radiation, and relative abundance of hydrogen
	and helium
5	3.9.3.3 Quasars
	Quasars as the most distant measurable objects
	Discovery of quasars as bright radio sources
	Quasars show large optical red shifts; estimation involving distance and power output
	Formation of quasars from active supermassive black holes
6	3.9.3.4 Detection of exoplanets
	Difficulties in the direct detection of exoplanets
	Detection techniques will be limited to variation in Doppler shift (radial velocity method) and the transit method
	Typical light curve
7	(Consolidation and exam questions practice)

Option Unit: Medica	l Physics	(25 hours)
----------------------------	-----------	------------

One-	Specification Content
hour	
lessons	
CHAPTER	R 15 PHYSICS OF THE EYE AND THE EAR (9 hours)
1	3.10.1.1 Physics of vision
	The eye as an optical refracting system
	Sensitivity of the eye; spectral response as a photodetector
	Spatial resolution of the eye; explanation in terms of the behaviour of rods and cones
2	3.10.1.2 Defects of vision and their correction using lenses
	Properties of converging and diverging lenses; principal focus, focal length and power
	power $-\frac{1}{f}$
	1 1 1
	$\overline{-+-} = \overline{-}$
	$m = \frac{V}{V}$
	u
	3.10.1.1 The eye as an optical refracting system, including ray diagrams of image formation
4	3.10.1.2 Myopia, hypermetropia, astigmatism
	Ray diagrams and calculations of powers (in dioptres) of correcting lenses for myopia and hypermetropia
5	The format of prescriptions for astigmatism
	(Consolidation and exam questions practice)
6	3.10.2.1 Ear as a sound detection system
	Simple structure of the ear, transmission processes
7	3.10.2.2 Sensitivity and frequency response
	Definition of intensity
	Human perception of relative intensity levels and the need for a logarithmic scale to reflect this
	(Review of properties of logarithms)
	Intensity level = 10 log (I/I_0) where the threshold of hearing $I_0 = 1.0 \times 10^{-12}$ W m ⁻²
	Measurement of sound intensity levels and the use of dB scale; relative intensity levels of sounds
8	3.10.2.2 Production and interpretation of equal loudness curves
	Measurement of sound intensity levels and the use of dBA scale
9	3.10.2.3 Defects of hearing
	The effect on equal loudness curves and the changes experienced in terms of hearing loss due to injury resulting from exposure to excessive noise or
	deterioration with age (excluding physiological changes)

One-	Specification Content
hour	
lessons	
	(Consolidation and exam questions practice)
CHAPTER	R 16 BIOLOGICAL MEASUREMENTS (2 hours)
1	3.10.3.1 Simple ECG machines and the normal ECG waveform
2	Principles of operation for obtaining the ECG waveform; explanation of the characteristic shape of a normal ECG waveform
2	(Consolidation and exam questions practice)
CHAPTER	R 17 NON-IONISING IMAGING (5 hours)
1	3.10.4.1 Ultrasound imaging
	Piezoelectric devices
	Principles of generation and detection of ultrasound pulses
	Reflection and transmission characteristics of sound waves at tissue boundaries, acoustic impedance, Z, and attenuation
	Use of the equations
	$Z = \rho c$
	and
	$I_r \left(Z_2 - Z_1\right)^2$
	$\frac{1}{I_{c}} = \left(\frac{2}{Z_{c}+Z_{c}}\right)$
2	1 (2 1)
2	5.10.4.1 A-scalls and B-scalls
	Advantages and disadvantages of ultrasound imaging in comparison with alternatives including safety issues and resolution
3	3 10 4 2 Fibre ontics and endoscony
5	(Review of total internal reflection and ontical fibres)
	Properties of fibre optics and applications in medical physics: including total internal reflection at the core-cladding interface
	Physical principles of the optical system of a flexible endoscope: the use of coherent and non-coherent fibre bundles: examples of use for internal imaging
	and related advantages
4	3.10.4.3 Magnetic resonance (MR) scanner
	Basic principles of MR scanner including:
	- cross-section of patient scanned using magnetic fields
	- protons initially aligned with spins parallel
	- spinning hydrogen nuclei (protons) precess about the magnetic field lines of a superconducting magnet
	- 'gradient' field coils used to scan cross-section
	- short radio frequency (RF) pulses cause excitation and change of spin state in successive small regions
	- protons excited during the scan emit RF signals as they de-excite
	- RF signals detected and the resulting signals are processed by a computer to produce a visual image
	Students will not be asked about the production of magnetic fields used in an MR scanner, or about de-excitation relaxation times

One-	Specification Content
hour	
lessons	
5	(Consolidation and exam questions practice)
CHAPTE	R 18 X-RAY IMAGING (4 hours)
1	3.10.5.1 The physics of diagnostic X-rays
	Physical principle of the production of X-rays; maximum photon energy, energy spectrum; continuous spectrum and characteristic spectrum
	Rotating-anode X-ray tube; methods of controlling the beam intensity, the photon energy, the image sharpness and contrast, and the patient dose
2	3.10.5.2 Image detection and enhancement
	Flat panel (FTP) detectors including X-ray scintillator, photodiode pixels, electronic scanning
	Advantages of FTP detector compared with photographic detection
	3.10.5.2 Contrast enhancement; use of X-ray opaque material as illustrated by the barium meal technique
2	Photographic detection with intensitying screen and fluoroscopic image intensification; reasons for using these
3	3.10.5.3 Absorption of X-rays
	Exponential allendation (Review of exponentials and logarithms)
	linear coefficient // mass attenuation coefficient //half-value thickness
	$I = I_0 e^{-\mu x}$
	$u_{\rm m} = u/c$
	Differential tissue absorption of X-rays excluding details of the absorption process
4	3.10.5.4 CT scanner
	Basic principles of CT scanner:
	- movement of X-ray tube
	- narrow, monochromatic X-ray beam
	- array of detectors
	- computer used to process the signals and produce a visual image
	(Comparison of imaging techniques)
	Comparisons will be limited to advantages and disadvantages of image resolution, cost and safety issues
	Students will not be asked about the construction or operation of the detectors
	(Consolidation and exam questions practice)
CHAPTER	R 19 RADIONUCLIDE IMAGING AND THERAPY (5 hours)
1	3.10.6.2 Half-life
	(Review of radioactive decay)
	Physical, biological and effective half-lives:
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$
	$T_{\rm E}$ $T_{\rm B}$ $T_{\rm P}$

One-	Specification Content
hour	
lessons	
	Definitions of each term
2	3.10.6.1 Imaging techniques
	Use of a gamma-emitting radioisotope as a tracer; technetium-99m, iodine-131 and indium-111 and their relevant properties
	The properties should include the radiation emitted, the half-life, the energy of the gamma radiation, the ability for it to be labelled with a compound with an
	affinity for a particular organ
3	3.10.6.1 The Molybdenum-Technetium generator, its basic use and importance
	PET scans
4	3.10.6.3 Gamma camera
	Basic structure and workings of a photomultiplier tube and gamma camera
	3.10.6.4 Use of high-energy X-rays
	External treatment using high-energy X-rays
	Methods to limit exposure to healthy cells
5	3.10.6.5 Use of radioactive implants
	Internal treatment using beta-emitting implants
	3.10.6.6 Imaging comparisons
	Students will be required to make comparisons between imaging techniques. Questions will be limited to consideration of image resolution convenience and
	safety issues.
	(Consolidation and exam questions practice)

One-	Specification Content		
hour			
lessons			
CHAPTE	R 20 ROTATIONAL DYNAMICS (10 hours)		
1	3.11.1.3 Rotational motion		
	Angular displacement, angular speed, angular velocity, angular acceleration		
	$\omega = \frac{\Delta \theta}{\Delta \theta}$		
	$\omega = \Delta t$		
	$\Lambda \phi$		
	$\alpha = \frac{\Delta \omega}{\Delta t}$		
2	3 11 1 1 Concept of moment of inertia		
-	$I = mr^2$ for a point mass		
	$I = \Sigma mr^2$ for an extended object		
	Qualitative knowledge of the factors that affect the moment of inertia of a rotating object		
	Expressions for moment of inertia will be given where necessary		
3	3.11.1.4 Torque and angular acceleration		
	T = Fr		
	$T = I\alpha$		
	5.11.1.5 Roldional motion Equations for uniform angular acceleration:		
	$\omega_2 = \omega_1 + \alpha t$		
	$\sigma = \gamma_2(\omega_2 + \omega_1)l$		
	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$		
	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$		
	Students should be aware of the analogy between rotational and translational dynamics		
4	3.11.1.3 Rotational motion		
	Representation by graphical methods of uniform and non-uniform angular acceleration		
5	3.11.1.2 Rotational kinetic energy		
6	$E_{\rm k} = \frac{1}{2}I\omega^2$		
7	2 11 1 2 Potational kinetic energy		
′	Use of flywheels in machines		
	Ose of Hywheels in machines		

One-	Specification Content
hour	
lessons	
	Use of flywheels for smoothing torque and speed, and for storing energy in vehicles, and in machines used for production processes
8	3.11.1.5 Angular momentum
	Angular momentum = $I\omega$
	Conservation of angular momentum.
	Angular impulse = change in angular momentum
	$T \Delta t = \Delta (I \omega)$
	where T is constant
	Applications may include examples from sport
9	3.11.1.6 Work and power
	$W = T \theta$
	$P = T\omega$
	Awareness that frictional torque has to be taken into account in rotating machinery
10	(Consolidation and exam questions practice)
CHAPTE	R 21 THERMODYNAMICS (7 hours)
1	(Revision of gas laws, ideal gas equation pV = nRT, absolute zero, kinetic theory model from Chapter 3)
2	3.11.2.1 First law of thermodynamics
	Quantitative treatment of first law of thermodynamics: $Q = \Delta U + W$
	where Q is energy transferred to the system by heating, ΔU is increase in internal energy and W is work done by the system
	Applications of first law of thermodynamics
3	3.11.2.2 Non-flow processes
4	Isothermal, adiabatic, constant pressure and constant volume changes:
	pV = nRT
	adiabatic change $pV' = \text{constant}$
	isothermal change <i>pV</i> = constant
	at constant pressure $W = p \Delta V$
	Application of first law of thermodynamics to the above processes
5	3.11.2.3 The $p-V$ diagram
6	Representation of processes on this diagram
	Estimation of work done in terms of area below the graph
	Extension to cyclic processes: work done per cycle = area of loop
	Expressions for work done are not required except for the constant pressure case, $w = p \Delta v$
7	(Consolidation and exam questions practice)

One-	Specification Content
hour	
lessons	
CHAPTER	R 22 HEAT ENGINES (8 hours)
1	3.11.2.4 Engine cycles
	Understanding of a four-stroke petrol engine cycle and a diesel engine cycle, and of the corresponding indicator diagrams
	A knowledge of engine constructional details is not required
	Comparison with the theoretical diagrams for these cycles
	Questions may be set on other cycles, but they will be interpretative and all essential information will be given
2	3.11.2.4 Engine cycles
3	Input power = calorific value × fuel flow rate
-	Indicated power as (area of $p-V$ loop) × (no. of cycles per second) × (no. of cylinders)
	Output or brake power, $P = T\omega$
	Friction power = indicated power – brake power
	Use of indicator diagrams for predicting and measuring power
4	3.11.2.4 Engine cycles
	Engine efficiency; overall, thermal and mechanical efficiencies
	Overall efficiency - brake power
	input power
	indicated power
	input power
	brake power
	Mechanical efficiency =
	Use of indicator diagrams for predicting and measuring efficiency
5	3.11.2.5 Second law and engines
6	Impossibility of an engine working only by the first law
Ū	Second law of thermodynamics expressed as the need for a heat engine to operate between a source and a sink
	$W = Q_H - Q_C$
	Efficiency – $\frac{1}{Q_{H}} = \frac{1}{Q_{H}}$
	Maximum theoretical efficiency = $\frac{T_{H} - T_{C}}{T_{H}}$

One-	Specification Content
hour	
lessons	
	source at T _H Q _H
	$\overset{\bullet}{\bigcirc} \longrightarrow W$
	sink at T _C
	Reasons for the lower efficiencies of practical engines
	Maximising use of W and Q_{H} for example in combined heat and power schemes
7	3.11.2.6 Reversed heat engines
	Basic principles and uses of heat pumps and refrigerators
	A knowledge of practical heat pumps or refrigerator cycles and devices is not required
	hot space at T _H
	$\bigcirc \bullet \longrightarrow w$
	cold space at T _C
	Coefficients of performance:
	refrigerator: COP _{ref} = $\frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C} = \frac{T_C}{T_H - T_C}$
	heat pump: $\text{COP}_{\text{hp}} = \frac{Q_{\text{H}}}{W} = \frac{Q_{\text{H}}}{Q_{\text{H}} - Q_{\text{C}}} = \frac{T_{\text{H}}}{T_{\text{H}} - T_{\text{C}}}$
8	(Consolidation and exam questions practice)

One-	Specification Content
hour	
lessons	
CHAPTER	23 ELECTRONS (7 hours)
1	3.12.1.1 Cathode rays
	Production of cathode rays in a discharge tube
2	3.12.1.2 Thermionic emission of electrons
	The principle of thermionic emission
	Work done on an electron accelerated through a pd:
	$\begin{bmatrix} 1 \\ -mv^2 = eV \end{bmatrix}$
	2
3	3.12.1.3 Specific charge of the electron
	Determination of the specific charge of an electron, e/m _e , by any one method (crossed fields)
	Significance of Thomson's determination of <i>e/m</i> e
	Comparison with the specific charge of the hydrogen ion
4	3.12.1.3 Determination of the specific charge of an electron, e/m_e , by any one method (magnetic deflection)
5	3.12.1.4 Principle of Millikan's determination of the electronic charge
	Condition for holding a charged oil droplet, of charge Q, stationary between oppositely charged parallel plates:
	$\frac{QV}{Q} = mq$
	Motion of a falling oil droplet with and without an electric field; terminal speed to determine the mass and the charge of the droplet
6	Stokes' law for the viscous force on an oil droplet used to calculate the droplet radius:
	F = O[U]/V
	Significative of Millikan's results
7	(Consolidation and exam questions practice)
	24 WAVE PARTICLE DUALITY (12 bours)
CHAFTER 24 WAVE FARTICLE DUALITY (12 HOURS)	
1	3.12.2.1 Newton's corpuscular theory of light
	Comparison with Huygens' wave theory in general terms
	I ne reasons why Newton's theory was preterred.
2	3.12.2.2 Significance of Young's double slits experiment
	Explanation for tringes in general terms, no calculations are expected
L	Delayed acceptance of Huygens, wave theory of light
3	3.12.2.3 Electromagnetic waves

One-	Specification Content
hour	
lessons	
	Fizeau's determination of the speed of light and its implications
4	3.12.2.3 Nature of electromagnetic waves
	Maxwell's formula for the speed of electromagnetic waves in a vacuum
	$c = \frac{1}{1}$
	$c = \sqrt{\mu_0 \varepsilon_0}$
	where μ_0 is the permeability of free space and ε_0 is the permittivity of free space
	Students should appreciate that ε_0 relates to the electric field strength due to a charged object in free space and μ_0 relates to the magnetic flux density due
	to a current-carrying wire in free space
5	3.12.2.3 Hertz's discovery of radio waves including measurements of the speed of radio waves
6	3.12.2.4 The ultraviolet catastrophe and black-body radiation
	Planck's interpretation in terms of quanta
7	3.12.2.4 the discovery of photoelectricity
	The failure of classical wave theory to explain observations on photoelectricity
	Einstein's explanation of photoelectricity and its significance in terms of the nature of electromagnetic radiation
8	3.12.2.5 Wave-particle duality
	de Broglie's hypothesis: $p = h/\lambda$
	$\lambda = \frac{n}{2}$
9	$\sqrt{2meV}$
10	2.42.2.C. Electron diffraction experiments; qualitative explanation of the effect of a change of electron speed on the diffraction pattern
10	3.12.2.6 Electron microscopes
	Principle of operation of the transmission electron microscope (TEM)
11	3 12 2 6 Principle of operation of the scapning tunnelling microscope (STM)
12	(Cancelidation and even eventions)
12	(consolidation and exam questions practice)
CHAPTER	25 SPECIAL RELATIVITY (6 hours)
1	3.12.3.1 The Michelson-Morley experiment
	Principle of the Michelson-Morley interferometer
	Outline of the experiment as a means of detecting absolute motion
	Significance of the failure to detect absolute motion
2	The invariance of the speed of light
2	3.12.3.2 Einstein s theory of special relativity
	The concept of an inertial frame of reference

One-	Specification Content
hour	
lessons	
	The two postulates of Einstein's theory of special relativity:
	1 physical laws have the same form in all inertial frames
	2 the speed of light in free space is invariant
	3.12.3.3 Time dilation
	Proper time and time dilation as a consequence of special relativity
	Time dilation:
	$t - \frac{t_0}{t_0}$
	$l = \sqrt{\frac{\nu^2}{\nu^2}}$
	$\sqrt{1-\frac{1}{c^2}}$
3	3.12.3.3 Time dilation:
	$t - t_0$
	$l = \frac{1}{\sqrt{1}} \frac{1}{2}$
	$\sqrt{1-\frac{c^2}{c^2}}$
	Evidence of time dilation from muon decay
	3.12.3.4 Length contraction
	Length of an object having a speed v :
	112
	$l = l_0 \left 1 - \frac{\nu}{r^2} \right $
	$\sqrt{c^2}$
4	3.12.3.5 Mass and energy
	Equivalence of mass and energy, $E = mc^2$
	$m_{\star}c^2$
	$E = \frac{m_0 c}{\sqrt{m_0 c}}$
	$1 - \frac{v^2}{r^2}$
	v c^{-}
5	3 12 3 5 Bertozzi's experiment as direct evidence for the variation of kinetic energy with speed
	Sizzisis bertozzi s'experiment us uncer evidence for the variation of kinetic energy with speed
6	(Consolidation and exam questions practice)

Option Unit: Electronics (25 hours)

One-	Specification Content
hour	
lessons	
CHAPTE	R 26 DISCRETE SEMICONDUCTOR DEVICES (5 hours)
1	(Review of semiconductor materials; charge carriers as electrons and holes; n- and p- type materials; the p-n junction)
2	3.13.1.1 MOSFET (metal-oxide semiconductor field-effect transistor)
	Use in N-channel, enhancement mode only is required
	Simplified structure, behaviour and characteristics
	Drain, source and gate
	V _{DS} , V _{GS} , I _{DSS} and V _{th}
	Use as a switch, use as a device with a very high input resistance
3	3.13.1.2 Zener diode
	Characteristic curve showing Zener breakdown voltage and typical minimum operating current
	Anode and cathode
	Use with a resistor as a constant voltage source
	Use to provide a reference source
	Use as a stabiliser is not required
4	3.13.1.3 Photodiode
	Characteristic curves and spectral response curves
	Use in photoconductive mode as a detector in optical systems
	Use with scintillator to detect atomic particles
5	3.13.1.4 Hall effect sensor
	(The Hall effect)
	Use as magnetic field sensor to monitor attitude
	Use in tachometer
	Principles of operation are not required
	(Consolidation and exam questions practice)
CHAPTE	R 27 ANALOGUE AND DIGITAL SIGNALS (5 hours)
1	3.13.2.1 Difference between analogue and digital signals
	(Nature of analogue and digital signals)
	Bits, bytes
	Knowledge of binary numbers 1 to 10
	The ability to carry out binary arithmetic is not required
	Effect of noise in communication systems
	Process of recovery of original data from noisy signal

2	3.13.2.1 Students should appreciate the use of a variety of sensors to collect analogue data
	Analogue-to-digital conversion:
	- sampling audio signals for transmission in digital form
	- conversion of analogue signals into digital data using two voltage levels
3	3.13.2.1 Analogue-to-digital conversion:
	- sampling rate
	- quantisation
	- effect of sampling rate and number of bits per sample on quality of conversion
4	3.13.2.1 Pulse code modulation
	Advantages and disadvantages of digital sampling
	(Consolidation and exam questions practice)
5	3.13.3.1 LC resonance filters
	Only parallel resonance arrangements are required
	(Inductors and inductance)
	Analogy between LC circuit and mass-spring system
	Inductance as mass analogy
	Capacitance as spring analogy
	Resonant frequency,
	$J_0 = \frac{1}{2\pi\sqrt{LC}}$
	Energy (voltage) response curve
	Q factor,
	$Q = \frac{\bullet}{f_{D}}$
	B f is the handwidth at the EOV energy points
	JB is the bandwidth at the 50% energy points
	(Exam questions practice)
СНАРТЕ	R 28 OPERATIONAL AMPLIFIERS (5 hours)
1	3.13.3.2 The ideal operational amplifier
	The operational amplifier should be treated as an important system building block
	Operation and characteristics of an ideal operational amplifier:
	- power supply and signal connections
	- infinite open-loop gain
	- infinite input resistance
	Open-loop transfer function for a real operational amplifier, $V_{out} = A_{OL}(V_+ - V)$
	Use as a comparator

2	3.13.4.1 Operational amplifier in inverting amplifier configuration	
	Derivation of	
	V _{out} R _f	
	$\frac{1}{V_{in}} = -\frac{1}{R_{in}}$	
	Meaning of virtual earth, virtual-earth analysis	
	3.13.4.2 Operational amplifier in non-inverting amplifier configuration	
	$V_{\rm out}$ $R_{\rm f}$	
	$\frac{-600}{M} = 1 + \frac{1}{R}$	
	In In In Internet Provided Internet Provided Internet Provided Pro	
3	3 13 4 3 Operational amplifier in summing amplifier configuration	
5		
	$V_{\text{out}} = -R_{\text{f}} \left[\frac{v_1}{2} + \frac{v_2}{2} + \frac{v_3}{2} + \dots \right]$	
	$\begin{pmatrix} R_1 & R_2 & R_3 \end{pmatrix}$	
	Derivation is not required	
	Difference amplifier configuration	
	$V_{\rm res} = (V_{\rm r} - V_{\rm r}) \frac{R_{\rm f}}{r}$	
	r_{0}	
	Derivation is not required	
5	3.13.4.4 Real operational amplifiers	
	Limitations of real operational amplifiers	
	Frequency response curve	
	gain × bandwidth = constant for a given device	
	(Consolidation and exam questions practice)	
CHAPTE	CHAPTER 29 DIGITAL SIGNAL PROCESSING (5 hours)	
1	3.13.5.1 Combinatorial logic	
	Use of Boolean algebra as related to truth tables and logic gates	
	$\overline{A} = \operatorname{not} A$	
	$A \cdot B = A$ and B	
	A + B = A or B	
	Identification of AND, NAND, OR, NOR NOT and EOR gates	
	The gates should be treated as building blocks. The internal structure or circuit of the gates is not required	
2	3.13.5.1 Identification and use of AND, NAND, OR, NOR NOT and EOR gates in combination in logic circuits	
	Construction and deduction of a logic circuit from a truth table	

(The D-type flip-flop) Counting circuits: binary counter inputs to the circuit, clock, reset, up/down Outputs from the circuits: - modulo-n counter from basic counter with the logic driving a reset pin - BCD counter - Johnson counter Inputs to the circuits, clock, reset, up/down Outputs from the circuits 5 3.13.5.3 Astables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external RC network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 3D DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system (information input imput imouting information imput imorphone imput imorp	3	3.13.5.2 Sequential logic
Counting circuits: binary counter Imputs to the circuit, clock, reset, up/down Outputs from the circuit Imputs to the circuits, clock, reset, up/down Outputs from the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Outputs from the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Outputs from the circuits, clock, reset, up/down Outputs from the circuits, clock, reset, up/down Outputs to the circuits, clock, reset, up/down Image: the circuits, clock, reset, up/down Image: the circuits, clo		(The D-type flip- flop)
Inputs to the circuit, clock, reset, up/down Outputs from the circuits: - modulo- <i>n</i> counter from basic counter with the logic driving a reset pin - BCD counter - Johnson counter Inputs to the circuits, clock, reset, up/down Outputs from the circuits 5 3.13.5.3 Astables 5 3.13.5.3 Astables 5 3.13.5.3 Astables 5 3.13.5.3 Astables 6 Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (<i>Consolidation and exan questions practice</i>) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system Communication systems, block diagram of 'real time' communication system (ransmission path e.g. radio waves (ransmission path e.g. radio waves (ransmission path e.g. radio waves (ransmission path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (<i>Radio wave communication</i> , projucial fibre, electromagnetic (radio, microwave) 2 3.13.5.2 (ransmission path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 2 3.13.6.2 (radio wave communication) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Explicit		Counting circuits: binary counter
Outputs from the circuit 4 3.13.5.2 Counting circuits:		Inputs to the circuit, clock, reset, up/down
 3.13.5.2 Counting circuits: -modulo-<i>n</i> counter from basic counter with the logic driving a reset pin BCD counter Johnson counter Inputs to the circuits Johnson the circuits S		Outputs from the circuit
 modulo-n counter from basic counter with the logic driving a reset pin BCD counter Johnson counter Inputs to the circuits, clock, reset, up/down Outputs from the circuits, clock, reset, up/down Variation of running frequency using an external RC network Knowledge of a particular circuit or a specific device (e.g. S55 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system	4	3.13.5.2 Counting circuits:
 BCD counter Johnson counter Johnson counter Inputs to the circuits, clock, reset, up/down Outputs from the circuits 3.13.5.3 Astables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external RC network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information fransducer e.g. modulator amplifier fransmitter e.g. e.g. aerial amplifier demodulator fransmitter e.g. aerial amplifier demodulator fransmitter e.g. aerial amplifier demodulator fransmitter fransmiter fransmitter fransmitter fransmitter fra		- modulo- <i>n</i> counter from basic counter with the logic driving a reset pin
 - Johnson counter Inputs to the circuits, clock, reset, up/down Outputs from the circuits 3.13.5.3 Astables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (<i>Consolidation and exam questions practice</i>) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input microphone imput transmission path e.g. radio waves information question path e.g. radio waves output Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (Radio wave communication): ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the E: Satellite externs and twical transmission 		- BCD counter
Inputs to the circuits, clock, reset, up/down Outputs from the circuits 5 3.13.5.3 stables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (<i>Consolidation and exam questions practice</i>) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information information transducer e.g. (modulator) information information transducer e.g. (modulator) information information input (ransmission path e.g. radio waves) information output (ransmission path e.g. radio waves) information output (ransmission path e.g. radio waves) Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the E- surface		- Johnson counter
Outputs from the circuits 5 3.13.5.3 Astables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (<i>Consolidation and exam questions practice</i>) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input amplifier information input modulator information output information information input transmitter information input transmitter information input information interver amplifier e.g. aerial interver output information output transmission path e.g. radio waves output only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: media wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (<i>Radio wave communication:</i>) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Exis		Inputs to the circuits, clock, reset, up/down
5 3.13.5.3 Astables The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (<i>Consolidation and exam questions practice</i>) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input transmission path e.g. radio waves information information input e.g. aerial information output information output information information intensition-path e.g. radio waves information output output information output information output index aerial amplifier demodulator output information output output output information output output output astallite amplifier demodulator fransmission-path media: metal wire, optical		Outputs from the circuits
The astable as an oscillator to provide a clock pulse Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external RC network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input modulator q.g. aerial amplifier utransmission path e.g. radio waves utransmission path e.g. radio waves utransmission path e.g. radio waves 0nly the purpose of each stage is required 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Existence 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Existence	5	3.13.5.3 Astables
Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio Variation of running frequency using an external <i>RC</i> network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input transmission path e.g. radio waves transmission path e.g. radio waves e.g. aerial amplifier demodulator output transmission path e.g. radio waves frequency output 3.13.6.2 Transmission me		The astable as an oscillator to provide a clock pulse
Variation of running frequency using an external RC network Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input rransmission path e.g. radio waves if eceiver amplifier e.g. aerial output information output information information output information output information information output information output information output information output only the purpose of each stage is required 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Examples of experimentation:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Examples of experimentation is provided and transmission frequencies		Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio
Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required (Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input modulator input modulator input amplifier transmission path e.g. radio waves information indexer e.g. aerial amplifier demodulator information inductor e.g. aerial amplifier demodulator information output transmission path e.g. radio waves output construct output output output output loudspeaker output J3.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength r		Variation of running frequency using an external RC network
(Consolidation and exam questions practice) CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input information input transmission path e.g. radio waves if receiver e.g. aerial information output information information output output information information output information output output output information output output indicapeaker output Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Experimence Stabilitie systems and twincal transmission frequencies		Knowledge of a particular circuit or a specific device (e.g. 555 chip) will not be required
CHAPTER 30 DATA COMMUNICATIONS SYSTEMS (5 hours) 1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input microphone modulator microphone transmission path e.g. radio waves transmission path e.g. radio waves receiver amplifier demodulator upput output microphone information output Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Experiment		(Consolidation and exam questions practice)
1 3.13.6.1 Principles of communication systems Communication systems, block diagram of 'real time' communication system information input input input information input incrophone microphone modulator input amplifier incompone e.g. radio waves incompone output information information information information information output information information output information output output information information output information output information output indexpect output Information output indexpect output	CHAPTER	R 30 DATA COMMUNICATIONS SYSTEMS (5 hours)
1 0.15.0.1 Finitiples of communication systems Communication systems, block diagram of 'real time' communication system information input input<	1	2 13 6 1 Principles of communication systems
 Communication systems, block diagram of real time communication system information input input transmission path e.g. radio waves transmission path e.g. radio waves e.g. aerial demodulator transmission path e.g. radio waves output output output output output output output output amplifier demodulator transmission path e.g. radio waves arial amplifier demodulator transmission path e.g. radio waves output output Only the purpose of each stage is required a.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (<i>Radio wave communication:</i>) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Expression 	1	Communication systems block diagram of 'real time' communication system
2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Examples		
input input <td< th=""><th></th><th>information input transmitter</th></td<>		information input transmitter
transmission path e.g. radio waves receiver e.g. aerial amplifier demodulator transducer e.g. loudspeaker output Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface surface Satellite systems and typical transmission frequencies		input microphone e.g. amplifier e.g. aerial
transmission path e.g. radio waves receiver e.g. aerial amplifier demodulator transmission-path output loudspeaker loutput		
2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface		transmission path e.g. radio waves
Image: receiver e.g. aerial amplifier demodulator demodulator loudspeaker information output information output Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies		
Implifier Implifier Implifier Implifier e.g. aerial amplifier Implifier Implifier Only the purpose of each stage is required 3.13.6.2 Transmission media Implifier Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies		output
 Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (<i>Radio wave communication:</i>) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies 		e.g. aerial demodulator demodulator demodulator e.g.
Only the purpose of each stage is required 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 2 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies		loudspeaker
 3.13.6.2 Transmission media Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (<i>Radio wave communication:</i>) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies 		Only the nurnose of each stage is required
 Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave) 3.13.6.2 (<i>Radio wave communication:</i>) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies 		3 13 6 2 Transmission media
 3.13.6.2 (Radio wave communication:) ground waves, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Easurface Satellite systems and typical transmission frequencies 		Transmission-path media: metal wire, optical fibre, electromagnetic (radio, microwave)
surface Satellite systems and typical transmission frequencies	2	3 13 6 2 (Radio wave communication) ground waves refraction and reflection of sky waves diffraction of long-wavelength radiation around the Earth's
Satalite systems and typical transmission frequencies	-	surface
Jalenne avalenna and tvollar u anannaaith eudenniea		Satellite systems and typical transmission frequencies
Students should recognize that up links and down links require different frequencies so that the receivers are not do consed		Students should recognise that up-links and down-links require different frequencies so that the receivers are not de-sensed
I Students should recognise that up-links and down-links require different frequencies so that the receivers are not de-sensed		
Jatenite systems and typical itansmission nequencies	2	Image: constraint of the systems and typical transmission frequencies information output transducer e.g. output output Image: constraint of the systems and typical transmission frequencies information output output
Students should recognise that up-links and down-links require different requencies so that the receivers are not de-sensed		

3	 3.13.6.4 Amplitude modulation (AM)and frequency modulation (FM) techniques Principles of modulation; bandwidth Details of modulation circuits for modulating a carrier signal with the information signal will not be required Carrier wave and information signal Graphical representation of both AM and FM modulated signals Students will be expected to identify the carrier frequency and the information frequency from a graph of the variation of signal voltage with time Bandwidth requirements of simple AM:
	bandwidth = $2f_{\rm M}$
	Bandwidth requirements of simple FM:
	bandwidth = $2(\Delta f + f_M)$
	Data capacity of a channel
	Comparison of bandwidth availability for various media
5	3.13.6.3 Time-division multiplexing
	Basic principles of time-division multiplexing
	(Consolidation and exam questions practice)