Module 1: Cell and Molecular Biology 1.1.1: Aspects of Biochemistry

1	Many small organisms are able to skate over the surface of water. Which property water allows them to do so?	of
	(A) Adhesion with other molecules	A
	(B) Cohesion of water molecules	B
	(C) Low viscosity	C
	(D) Low surface tension	D
2	Why does sucrose give a negative result when heated with Benedict's solution?	
	(A) No hydroxyl group is present in the sugar	(A)
	(B) The carbonyl group and the keto group are not free to react	B
	(C) Sucrose is a disaccharide	C
	(D) Sucrose is a complex sugar	D
3	What type of bonds are present between glucose residues within a molecule of	

amylopectin?(A) α 1-4 glycosidic bonds(A)(B) β 1-4 glycosidic bonds(B)(C) α 1-4 and α 1-6 glycosidic bonds(C)

	07		\bigcirc
(D) β 1-4 and β 1-6	glycosidic bonds	(D

4 Figure 1.1 represents a triglyceride.

What type of bond is formed at the point labelled *X*?

(A) Ester bond	\bigcirc
(B) Glycosidic bond	B
(C) Hydrogen bond	C
(D) Phosphodiester bond	(D)

5 Using the diagram of a dipeptide in Figure 1.2, indicate which bond is broken on hydrolysis to form the amino acids.

Figure 1.2

(A) A	(\underline{A})
(B) B	B
(C) C	\bigcirc
(D) D	D

1.1.1: Aspects of Biochemistry (cont.)

6 Which level of protein structure is NOT maintained by covalent bonds?

(A) Primary	A
(B) Secondary	B
(C) Tertiary	C
(D) Quaternary	D

7 Which of the following bonds is responsible for the secondary level of protein structure?

(A) Ionic bonds	A
(B) Hydrogen bonds	B
(C) Peptide bonds	C
(D) S–S bonds	(D)

8 Which test will give a positive result when carried out on a polymer of the molecule shown in Figure 1.3?

(A) Adding iodine in potassium iodide	A
(B) Adding copper sulfate and potassium hydroxide	B
(C) Heating with Benedict's reagent	C
(D) Shaking with alcohol then pouring into cold water	

9 Which factor ultimately determines the shape of the protein molecule?

(A) Amino acid sequence (A)B (B) Ionic bonding \bigcirc (C) Hydrogen bonding (D) (D) Hydrophobic interactions

10 Haemoglobin is a globular protein comprising two beta and two alpha subunits. Which structural levels are exhibited by haemoglobin?

(A) Primary and secondary	A
(B) Primary and tertiary	B
(C) Secondary, tertiary and quaternary	C
(D) Primary, secondary, tertiary and quaternary	D

1.1.2: Cell Structure

The resolution of a microscope is the

(A) wavelength of the rays used to view the object under the microscope (A) B

C

(D)

- (C) ability to show a clear image of the object viewed under the microscope
- (D) greatest magnification that can be achieved under the microscope

(B) ability to distinguish two objects as being separate from each other